31,127 research outputs found

    A Feature-Based Comparison of Evolutionary Computing Techniques for Constrained Continuous Optimisation

    Full text link
    Evolutionary algorithms have been frequently applied to constrained continuous optimisation problems. We carry out feature based comparisons of different types of evolutionary algorithms such as evolution strategies, differential evolution and particle swarm optimisation for constrained continuous optimisation. In our study, we examine how sets of constraints influence the difficulty of obtaining close to optimal solutions. Using a multi-objective approach, we evolve constrained continuous problems having a set of linear and/or quadratic constraints where the different evolutionary approaches show a significant difference in performance. Afterwards, we discuss the features of the constraints that exhibit a difference in performance of the different evolutionary approaches under consideration.Comment: 16 Pagesm 2 Figure

    A Feature-Based Analysis on the Impact of Set of Constraints for e-Constrained Differential Evolution

    Full text link
    Different types of evolutionary algorithms have been developed for constrained continuous optimization. We carry out a feature-based analysis of evolved constrained continuous optimization instances to understand the characteristics of constraints that make problems hard for evolutionary algorithm. In our study, we examine how various sets of constraints can influence the behaviour of e-Constrained Differential Evolution. Investigating the evolved instances, we obtain knowledge of what type of constraints and their features make a problem difficult for the examined algorithm.Comment: 17 Page

    Constraint handling strategies in Genetic Algorithms application to optimal batch plant design

    Get PDF
    Optimal batch plant design is a recurrent issue in Process Engineering, which can be formulated as a Mixed Integer Non-Linear Programming(MINLP) optimisation problem involving specific constraints, which can be, typically, the respect of a time horizon for the synthesis of various products. Genetic Algorithms constitute a common option for the solution of these problems, but their basic operating mode is not always wellsuited to any kind of constraint treatment: if those cannot be integrated in variable encoding or accounted for through adapted genetic operators, their handling turns to be a thorny issue. The point of this study is thus to test a few constraint handling techniques on a mid-size example in order to determine which one is the best fitted, in the framework of one particular problem formulation. The investigated methods are the elimination of infeasible individuals, the use of a penalty term added in the minimized criterion, the relaxation of the discrete variables upper bounds, dominancebased tournaments and, finally, a multiobjective strategy. The numerical computations, analysed in terms of result quality and of computational time, show the superiority of elimination technique for the former criterion only when the latter one does not become a bottleneck. Besides, when the problem complexity makes the random location of feasible space too difficult, a single tournament technique proves to be the most efficient one

    Constrained set-up of the tGAP structure for progressive vector data transfer

    Get PDF
    A promising approach to submit a vector map from a server to a mobile client is to send a coarse representation first, which then is incrementally refined. We consider the problem of defining a sequence of such increments for areas of different land-cover classes in a planar partition. In order to submit well-generalised datasets, we propose a method of two stages: First, we create a generalised representation from a detailed dataset, using an optimisation approach that satisfies certain cartographic constraints. Second, we define a sequence of basic merge and simplification operations that transforms the most detailed dataset gradually into the generalised dataset. The obtained sequence of gradual transformations is stored without geometrical redundancy in a structure that builds up on the previously developed tGAP (topological Generalised Area Partitioning) structure. This structure and the algorithm for intermediate levels of detail (LoD) have been implemented in an object-relational database and tested for land-cover data from the official German topographic dataset ATKIS at scale 1:50 000 to the target scale 1:250 000. Results of these tests allow us to conclude that the data at lowest LoD and at intermediate LoDs is well generalised. Applying specialised heuristics the applied optimisation method copes with large datasets; the tGAP structure allows users to efficiently query and retrieve a dataset at a specified LoD. Data are sent progressively from the server to the client: First a coarse representation is sent, which is refined until the requested LoD is reached

    Predictive pole-placement control with linear models

    Get PDF
    The predictive pole-placement control method introduced in this paper embeds the classical pole-placement state feedback design into a quadratic optimisation-based model-predictive formulation. This provides an alternative to model-predictive controllers which are based on linear–quadratic control. The theoretical properties of the controller in a linear continuous-time setting are presented and a number of illustrative examples are given. These results provide the foundation for novel linear and nonlinear constrained predictive control methods based on continuous-time models

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    An application of simulated annealing to the optimum design of reinforced concrete retaining structures

    Get PDF
    This paper reports on the application of a simulated annealing algorithm to the minimum cost design of reinforced concrete retaining structures. Cantilever retaining walls are investigated, being representative of reinforced concrete retaining structures that are required to resist a combination of earth and hydrostatic loading. To solve such a constrained optimisation problem, a modified simulated annealing algorithm is proposed that avoids the simple rejection of infeasible solutions and improves convergence to a minimum cost. The algorithm was implemented using an object-orientated visual programming language, offering facilities for continual monitoring, assessing and changing of the simulated annealing control parameters. Results show that the simulated annealing can be successfully applied to the minimum cost design of reinforced concrete retaining walls, overcoming the difficulties associated with the practical and realistic assessment of the structural costs and their complex inter-relationship with the imposed constraints on the solution space

    FREE SEARCH AND DIFFERENTIAL EVOLUTION TOWARDS DIMENSIONS NUMBER CHANGE

    Get PDF
    This paper presents an exploration of Free Search (FS) and modified Differential Evolution (DE) with enhanced adaptivity. The aim of the study is to identify how these methods can cope with changes of the number of variables of a hard design test, unaided. The results suggest that both methods can adapt successfully to the variation of the number of variables and constraint conditions. The results are presented. Contributions to the engineering design are replacement in high extent of human based search with machine based and movement of optimisation process from human guided to machine self guided search

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing
    corecore