699 research outputs found

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Extracting structured information from 2D images

    Get PDF
    Convolutional neural networks can handle an impressive array of supervised learning tasks while relying on a single backbone architecture, suggesting that one solution fits all vision problems. But for many tasks, we can directly make use of the problem structure within neural networks to deliver more accurate predictions. In this thesis, we propose novel deep learning components that exploit the structured output space of an increasingly complex set of problems. We start from Optical Character Recognition (OCR) in natural scenes and leverage the constraints imposed by a spatial outline of letters and language requirements. Conventional OCR systems do not work well in natural scenes due to distortions, blur, or letter variability. We introduce a new attention-based model, equipped with extra information about the neuron positions to guide its focus across characters sequentially. It beats the previous state-of-the-art benchmark by a significant margin. We then turn to dense labeling tasks employing encoder-decoder architectures. We start with an experimental study that documents the drastic impact that decoder design can have on task performance. Rather than optimizing one decoder per task separately, we propose new robust layers for the upsampling of high-dimensional encodings. We show that these better suit the structured per pixel output across the board of all tasks. Finally, we turn to the problem of urban scene understanding. There is an elaborate structure in both the input space (multi-view recordings, aerial and street-view scenes) and the output space (multiple fine-grained attributes for holistic building understanding). We design new models that benefit from a relatively simple cuboidal-like geometry of buildings to create a single unified representation from multiple views. To benchmark our model, we build a new multi-view large-scale dataset of buildings images and fine-grained attributes and show systematic improvements when compared to a broad range of strong CNN-based baselines

    A framework of lightweight deep cross-connected convolution kernel mapping support vector machines

    Get PDF
    Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classification. However, the depth kernel mapping support vector machine does not take into account the connection of different dimensional spaces and increases the model parameters. To further improve the recognition capability of deep kernel mapping support vector machines while reducing the number of model parameters, this paper proposes a framework of Lightweight Deep Convolutional Cross-Connected Kernel Mapping Support Vector Machines (LC-CKMSVM). The framework consists of a feature extraction module and a classification module. The feature extraction module first maps the data from low-dimensional to high-dimensional space by fusing the representations of different dimensional spaces through cross-connections; then, it uses depthwise separable convolution to replace part of the original convolution to reduce the number of parameters in the module; The classification module uses a soft margin support vector machine for classification. The results on 6 different visual datasets show that LC-CKMSVM obtains better classification accuracies on most cases than the other five models

    Emotional Storyteller for Vision Impaired and Hearing-Impaired Children

    Get PDF
    Tellie is an innovative mobile app designed to offer an immersive and emotionally enriched storytelling experience for children who are visually and hearing impaired. It achieves this through four main objectives: Text extraction utilizes the CRAFT model and a combination of Convolutional Neural Networks (CNNs), Connectionist Temporal Classification (CTC), and Long Short-Term Memory (LSTM) networks to accurately extract and recognize text from images in storybooks. Recognition of Emotions in Sentences employs BERT to detect and distinguish emotions at the sentence level including happiness, anger, sadness, and surprise. Conversion of Text to Human Natural Audio with Emotion transforms text into emotionally expressive audio using Tacotron2 and Wave Glow, enhancing the synthesized speech with emotional styles to create engaging audio narratives. Conversion of Text to Sign Language: To cater to the Deaf and hard-of-hearing community, Tellie translates text into sign language using CNNs, ensuring alignment with real sign language expressions. These objectives combine to create Tellie, a groundbreaking app that empowers visually and hearing-impaired children with access to captivating storytelling experiences, promoting accessibility and inclusivity through the harmonious integration of language, creativity, and technology. This research demonstrates the potential of advanced technologies in fostering inclusive and emotionally engaging storytelling for all children

    Research on Calligraphy Evaluation Technology Based on Deep Learning

    Get PDF
    Today, when computer-assisted instruction (CAI) is booming, related research in the field of calligraphy education still hasn’t much progress. This main research for the calligraphy beginners to evaluate their works anytime and anywhere. Author uses the literature research and interview to understand the common writing problems of beginners. Then conducts discussion on these problems, design of solutions, research on algorithms, and experimental verification. Based on the ResNet-50 model, through WeChat applet implements for beginners. The main research contents are as follows: (1) In order to achieve good results in calligraphy judgment, this article uses the ResNet-50 model to judge calligraphy. First, adjust the area of the handwritten calligraphy image as the input of the network to a small block suitable for the network. While training the network, adjust the learning rate, the number of image layers and the number of training samples to achieve the optimal. The research results show that ResNet has certain practicality and reference value in the field of calligraphy judgment. Regarding the possible over-fitting problem, this article proposes to improve the accuracy of the judgment by collecting more data and optimizing the data washing process. (2) Combining the rise of WeChat applets, in view of the current WeChat applet learning platform development process and the problem of fewer functional modules, this paper uses cloud development functions to develop a calligraphy learning platform based on WeChat applets. While simplifying the development process, it ensures that the functional modules of the platform meet the needs of teachers and beginners, it has certain practicality and commercial value. After the development of the calligraphy learning applet is completed, it will be submitted for official
    • …
    corecore