1,700,652 research outputs found
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
Learning sophisticated feature interactions behind user behaviors is critical
in maximizing CTR for recommender systems. Despite great progress, existing
methods seem to have a strong bias towards low- or high-order interactions, or
require expertise feature engineering. In this paper, we show that it is
possible to derive an end-to-end learning model that emphasizes both low- and
high-order feature interactions. The proposed model, DeepFM, combines the power
of factorization machines for recommendation and deep learning for feature
learning in a new neural network architecture. Compared to the latest Wide \&
Deep model from Google, DeepFM has a shared input to its "wide" and "deep"
parts, with no need of feature engineering besides raw features. Comprehensive
experiments are conducted to demonstrate the effectiveness and efficiency of
DeepFM over the existing models for CTR prediction, on both benchmark data and
commercial data
Data Engineering for the Analysis of Semiconductor Manufacturing Data
We have analyzed manufacturing data from several different semiconductor
manufacturing plants, using decision tree induction software called
Q-YIELD. The software generates rules for predicting when a given product
should be rejected. The rules are intended to help the process engineers
improve the yield of the product, by helping them to discover the causes
of rejection. Experience with Q-YIELD has taught us the importance of
data engineering -- preprocessing the data to enable or facilitate
decision tree induction. This paper discusses some of the data engineering
problems we have encountered with semiconductor manufacturing data.
The paper deals with two broad classes of problems: engineering the features
in a feature vector representation and engineering the definition of the
target concept (the classes). Manufacturing process data present special
problems for feature engineering, since the data have multiple levels of
granularity (detail, resolution). Engineering the target concept is important,
due to our focus on understanding the past, as opposed to the more common
focus in machine learning on predicting the future
Towards correct-by-construction product variants of a software product line: GFML, a formal language for feature modules
Software Product Line Engineering (SPLE) is a software engineering paradigm
that focuses on reuse and variability. Although feature-oriented programming
(FOP) can implement software product line efficiently, we still need a method
to generate and prove correctness of all product variants more efficiently and
automatically. In this context, we propose to manipulate feature modules which
contain three kinds of artifacts: specification, code and correctness proof. We
depict a methodology and a platform that help the user to automatically produce
correct-by-construction product variants from the related feature modules. As a
first step of this project, we begin by proposing a language, GFML, allowing
the developer to write such feature modules. This language is designed so that
the artifacts can be easily reused and composed. GFML files contain the
different artifacts mentioned above.The idea is to compile them into FoCaLiZe,
a language for specification, implementation and formal proof with some
object-oriented flavor. In this paper, we define and illustrate this language.
We also introduce a way to compose the feature modules on some examples.Comment: In Proceedings FMSPLE 2015, arXiv:1504.0301
- …
