
A feature-similarity model for product line engineering

Kaindl, Herman; Mannion, Mike

Published in:
Software Reuse for Dynamic Systems in the Cloud and Beyond

Publication date:
2014

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Kaindl, H & Mannion, M 2014, A feature-similarity model for product line engineering. in Software Reuse for
Dynamic Systems in the Cloud and Beyond: Proceedings of the 14th International Conference on Software
Reuse. vol. 8919, Lecture Notes in Computer Science, vol. 8919, Springer, pp. 35-41.
<http://icsr2015.ipd.kit.edu/>

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

https://researchonline.gcu.ac.uk/en/publications/1047189e-9386-4779-a75f-623542b7ea93
http://icsr2015.ipd.kit.edu/

A Feature-Similarity Model
for Product Line Engineering

Hermann Kaindl1 and Mike Mannion2

1 Institute of Computer Technology, Vienna University of Technology, Vienna, Austria
kaindl@ict.tuwien.ac.at

2 Executive Group, Glasgow Caledonian University
m.a.g.mannion@gcu.ac.uk

Abstract. Search, retrieval and comparison of products in a product line are
common tasks during product line evolution. Feature modeling approaches do
not easily support these tasks. This vision paper sets out a proposal for a fea-
ture-similarity model in which similarity metrics as used for example in case-
based reasoning (CBR) are integrated with feature models. We describe poten-
tial applications for Product Line Scoping, Domain Engineering and Applica-
tion Engineering.

Keywords: Product line engineering  feature-based representation  case-
based reasoning  similarity metric  feature-similarity model.

1 Introduction

Software Product Line Engineering (SPLE) consists of: Product Line Scoping, Do-
main Engineering and Application Engineering (though in some frameworks [1]
Product Line Scoping and Domain Engineering are both considered a part of a single
core asset development activity). During these activities, we are interested in compar-
ing the similarity of:

 a target product specification against existing product specifications;
 two or more existing product specifications against each other;
 how close an existing product matches the target market.

The information structure and content of feature models (regardless of notation)
does not readily lend itself to compare similarity. Understanding what features are
similar across different products, or what products are similar to other products, be-
comes very difficult as a product line evolves into tens, hundreds, maybe even thou-
sands of products each with many features.

Case-based reasoning (CBR) is a development approach in which software cases
are stored in a repository and new product development involves retrieving the most
similar previous case(s) to the problem to be solved and then adapting it (them). Sim-
ilarity matching, e.g. [2], is achieved by comparing some combination of surface
features i.e. those provided as part of its description, derived features (obtained from a

product’s description by inference based on domain knowledge) and structural fea-
tures (represented by complex structures such as graphs or first-order terms). An
overall similarity measure is computed from the weighted similarity measures of dif-
ferent elements. Efficient implementations for commonly used similarity metrics are
readily available, so that the computational effort for search and retrieval of similar
products has little impact on the efficiency of this approach. The key issue is the
(manual) effort for adapting similar cases found and retrieved.

This vision paper sets out a proposal for a feature-similarity model in which simi-
larity metrics as used in case-based reasoning (CBR), information retrieval or service
discovery are integrated with feature models. We describe potential applications for
Product Line Scoping, Domain Engineering and Application Engineering.

2 Related Work

Much work on feature models (see [3]) has focused on modelling representations and
traversal algorithms that lend themselves to automation, and there has been little work
on the relationships between product line feature models and similarity metrics.

The ReDSeeDS project (http://www.redseeds.eu) developed a specific sim-
ilarity metric including textual, semantic and graph-based components [4]. Require-
ments representations are compared (e.g. requirements specifications or models) ra-
ther than requirements [5]. Reuse can be based on a partial requirements specifica-
tion rather than a “complete” requirements specification [6]. The specification of new
requirements can be facilitated by reusing related requirements from a retrieved soft-
ware product, and the implementation information (models and code) of (one of)
similar problems can be taken for reuse and adapted to the newly specified require-
ments. There are well-defined reuse processes, tightly connected with tool support (in
parts) [7].

Similarity-based (Web) service discovery and (Web) service retrieval are also
based on similarity metrics, see e.g. [8, 9]. (Web) service matchmaking uses addition-
al heuristics [10], which may be adopted for whole software cases, and semantic ser-
vice annotations and the use of ontologies allow for metrics apart from those based on
text similarity [11]. Some approaches for an automated construction of feature mod-
els, based on similarity metrics, have been proposed [12, 13].

3 Contrasting SPLE and CBR

SPLE and CBR both support software product line engineering but address it differ-
ently. Table 1 summarizes these differences. In SPLE, the premise underlying fea-
ture model construction is that the rigour and consistency of the model structure can
be used to derive new products from existing product elements. Model construction
and maintenance costs (structure and content) are large but significantly reduce the
costs of new product development and thus have large benefits for reuse. In CBR, the
premise is that each product is constructed by retrieving and adapting similar cases
already built. Product description construction costs are small whilst the cost of

adapting an existing case can vary. So, SPLE and CBR have differences in the costs
of making software assets reusable and the benefits for reusing them. More details on
this comparison can be found in [14].

Table 1. Costs vs. Benefits

 SPLE CBR
Costs of Making Reusable Substantial Negligible

Benefits for Reuse Facilitates automated
product derivation

Facilitates finding similar
cases for reuse

4 A Feature-Similarity Model

A feature-similarity model combines a feature model for managing and deriving new
products and provides similarity values for several purposes. Figure 1 shows a small
feature model for a mobile phone in which the ability to make a call and the ability to
display are mandatory features. To make a call there are one or more alternatives and
the display can be in black and white or in colour. Figure 1 also shows four products
that contain different combinations of these features, and whilst the model shows only
examples of functional features, it can be extended to include non-functional features.

Figure 1: Integrated Model of a Mobile Phone Worked Example

The scores attached to the bidirectional links between the ellipses signify similarity
scores between products e.g. Phone 1 has 2 features for making a call, using numeric
digits or from a phone book, and a black and white display. Phone 2 has one way of
making a call, using numeric digits, and a black and white (BW) display. Phone 3 has
three ways of making a call and has a colour display. Intuitively Phone 1 and Phone 2
are more similar to each other than Phone 1 and Phone 3, or Phone 2 and Phone 3.
This is played out in the similarity values Phone 1/Phone 2 (.9), Phone 1/Phone 3 (.3),
Phone 2/Phone3 (.2). New Phone 4 is not yet fully specified, but similarity scores
compared to the other phones can be determined (cf. [5]) independently of whether
this new product is derived from the given feature model or not.

The solid lines of the (standard) feature model are explicit, while the bidirectional
links between the product ellipses are implicit i.e. they are computed on demand, not
necessarily stored, especially not upfront. The dotted lines to the product ellipses
should be stored, to enhance traceability during product derivation from the feature
model thus clarifying which features are in which product.

A feature-similarity model (i) combines features and similarities (ii) provides direct
similarity values between features (iii) facilitates comparing feature combinations in
different products) (iv) facilitates comparing entire product specifications. The added
value of an integrated model is the influence it will have during feature model con-
struction on an engineer’s deeper thinking about the extent to which one product is
different to another, particularly when the overall similarity differences are small,
why that is, and whether it is necessary or not. Each product line specification be-
comes a searchable asset and the similarity metrics enhance the search function.

The construction process for a feature-similarity model is (i) construct a feature
model (ii) allocate features to products (iii) calculate similarity values between fea-
tures (iv) calculate similarity values between specific feature combinations in differ-
ent product specifications (v) calculate similarity values between entire product speci-
fications. In practice these steps might be used iteratively to help with the construc-
tion of a product line to ensure that derivable products are sufficiently distinctive.

4.1 Product Line Scoping

Product Line Scoping is the process of identifying and bounding capabilities (prod-
ucts, features) and areas (subdomains, existing assets) of the product line where in-
vestment into reuse is economically useful and beneficial to product development
[15]. The output is a scope definition, which can be seen as part of the specification
the product line engineering project must eventually satisfy.

A feature-similarity model for product line scoping will focus on the features that
represent the distinguishing characteristics of the product line, which are important
for the market that is being targeted and which represent the product line boundary.
That information will come from a variety of sources e.g. industry forecasts, sales and
marketing intelligence, customer feedback, technology advances. Feature description
detail and the complexity of the corresponding feature model structure will depend on
the niche of the target market. For example in the fashion mobile phone market, the
emphasis is on the shape, size and colour of the casing to reflect the values of a fash-

ion brand name, rather than the phone’s functionality (often an existing model with
minor modifications). By calculating the similarity value of the casing feature com-
pared to a new target casing feature (step (iii) in the process above) we can inform the
judgment about whether the product should be in the product line or not and how it
might be best positioned in a market where look-and-feel govern distinctiveness.

When the number of target market characteristics and the number of products is
small, product line scoping is tractable without much need for tool support. When the
size or the level of complexity significantly increase, an automated similarity match-
ing tool can become very valuable. Whilst scoping is normally an activity undertaken
at the start of product line development it should continue as a product line evolves.

4.2 Domain Engineering

Domain Engineering encompasses domain requirements definition, domain analysis,
domain design, domain implementation. Our focus here is domain requirements defi-
nition. Finding domain requirements can be difficult because existing requirements
specifications (where they exist) can be written in different ways. A tool implement-
ing a feature-similarity model (step (v)) can provide some support for identifying
similarity between concepts across requirements specifications.

A feature-similarity model for Domain Engineering sets out all the features of the
product line model. Adding new variability to an existing product line model can be
difficult, and may not be required if there is already an existing alternative that seems
close enough. Finding this alternative quickly in a large model can be very difficult
and time-consuming. Making a judgment about the level of similarity of an existing
alternative can help with making a commercial judgment on whether to proceed or not
with including a new alternative. For example mobile phone product lines are becom-
ing increasingly feature-rich and complex: the number of different ways of making a
call is rapidly increasing beyond those set out in Figure 1. The ability to scan a num-
ber from a Quick Response code and the ability to scan a number from a jpeg image is
similar. However if one of these alternatives is already available then a decision may
be made not to include the other. Here we are calculating the similarity value of two
alternative features (step (iii)), such as different ways of making a phone call. In
practice it is highly unlikely that this approach would be adopted for all alternatives
across all features, but rather, effort will be targeted on features that are valued by the
customer but expensive to produce, and similar cheaper alternatives are available.

Feature-based SPLE most often lacks explicit representation of non-functional
characteristics (e.g. performance, security, safety). In CBR, specific (text) searches
based on similarity metrics can be an effective approach to uncovering such cross-
cutting concerns.

4.3 Application Engineering

Application Engineering is the construction of a new product drawing on the assets
that were developed during Domain Engineering. If a new product cannot be derived
from a given product line model then often the model needs to be adapted so that

derivation can follow a defined process. Exceptionally, if the “new” features required
are not going to be required in any other product, they can be added solely to the new
product, and the product line model is not adapted. A feature-similarity model for
Application Engineering sets out the features of the product line model that have been
derived, through a selection process, for the new product.

In large-scale product lines a challenge is to know whether a new product being de-
rived is similar to an existing one. The overall difference can be small but for a par-
ticular feature or feature combination it can be significant. Knowing the degrees of
similarity can help with commercial judgments e.g. whether to introduce a new prod-
uct into the market, use an existing product, or remove a product. Suppose there is a
mobile phone product line targeted at teenagers, where the feature focus is the ability
to make a call, the ability to display, the ability to take pictures and the ability to play
music but the product line manager has decided to add a multi-person video-
conferencing feature to the feature model. It will be sensible to know if this combina-
tion of features exists already in a different product line. By calculating the similarity
value of the entire product specification (step (v)) against phones targeted at small-to-
medium business enterprises (SMEs) that have all of these features, and by calculat-
ing the similarity values of a feature combination (step (iv)) of playing music and
making multi-person video conference calls, we may discover that in the product line
targeted at SMEs the phone we want already exists, albeit that the quality of the abil-
ity to play music is a little lower than desired but the quality of the multi-person vid-
eo-conference facility is a little higher than desired.

In practice, there may not always be enough time for adapting a product line model
so that the product derivation can take place, or there is insufficient time to complete
the detailed selection process from the model. Then, the most similar products may
be looked up to see whether the new product may be adapted directly based on them
(so one attribute of a search tool for Application Engineering is to enable search by
similarity threshold either for individual features and/or for entire products). In ef-
fect, this can lead to CBR reuse instead of working with feature models.

5 Discussion and Open-ended Questions

We do not prescribe here which set of specific similarity metrics to be used or how
those metrics should be computed. Commonly-used general-purpose similarity met-
rics could be enhanced by other approaches e.g. it is possible to indicate whether a
feature is a distinguishing characteristic of a product (e.g. display size) or not (e.g.
number of default screen savers). We can distinguish between alignable differences
and non-alignable differences [16] where alignable differences have the larger impact
on people's judgments of similarity. Electronic Tablets and Mobile Phones have
memory, processing power and a display (albeit of different sizes) which are recog-
nized as alignable differences because they are characteristics defining computers.
However, Mobile Phones provide the ability to make a telephone call without access-
ing the Internet, which Electronic Tablets usually do not, making this a non-alignable

difference. Placing a numerical value on the significance of alignable and non-
alignable differences could be factored into the overall similarity metric.

Another approach is structural similarity i.e. a syntactic approach to matching
normally based on the structure of a feature model. For example products having
mutually exclusive features such as BW and colour display, respectively, e.g. Phone 2
and Phone 3, may be considered less similar than products with the same feature,
such as BW, e.g. Phone 1 and Phone 2. Mutually exclusive features will make more
of a difference in this regard than having one more feature of a kind where all the
others are shared, e.g. Phone 1 can make a call from a phone book, while Phone 2
cannot.

We envisage that such similarity metrics of a feature-similarity model may also
serve as objective functions for automated search in the space of systems defined by
its feature model. Depending on what is to be optimised in terms of similarity, these
may serve as cost functions or utility functions, respectively. Such approaches would
fit into search-based software engineering, see [17].

A set of open ended questions includes:

 What are the thresholds for “similar” and for “different”?
 Which combination of similarity approaches might be suitable and when?
 What similarity metrics are worth computing and how should they be calculated ?
 How can similarity metrics be factored into existing process models for Product

Line Scoping, Domain Engineering, and Application Engineering?

The deployment of similarity metrics for SPLE requires a degree of caution and
prudence as with the use of any other software development metrics. Metrics provide
a data reference point and will best serve managers and engineers when they are used
in conjunction with data from other reference points. Be clear on what you are using
the metric for, get general agreement in the organization on which metrics to use, and
focus on only a few metrics – less is more.

6 Conclusion

A feature model does not facilitate search, retrieval or comparison of products in a
product line, common tasks during product line evolution. To address this, we have
set out ideas for enhancing feature models with similarity metrics in a new feature-
similarity model. However we recognize that whatever metrics are used there will
always be a need to map these numerical values on to an organisation’s collective
conceptual understanding of what similar and difference means in each context in
which the metrics are being used.

7 References

1. A Framework for Software Product Line Practice, Version 5.0, http://www.sei.cmu.
edu/productlines/frame_report (last accessed 6 Oct 2014)

2. Cover, T.M., Hart P.E.: Nearest Neighbour Pattern Classification. IEEE Trans. on Infor-
mation Theory 13, 21–27 (1967)

3. Benavides, D., Felfernig, A, Galindo, J.A., Reinfrank, F.: Automated Analysis in Feature
Modelling and Product Configuration. In: 13th International Conference on Software Re-
use (ICSR ’13), pp. 160–175 (2013)

4. Bildhauer, D., Horn, T., Ebert, J.: Similarity-driven software reuse. In: Proceedings of
CVSM ’09, pp. 31–36, IEEE (2010)

5. Kaindl, H., Svetinovic, D.: On confusion between requirements and their representations.
Requirements Engineering 15, 307–311 (2010)

6. Kaindl, H., Smialek, M., Nowakowski, W.: Case-based Reuse with Partial Requirements
Specifications. In: 18th IEEE International Requirements Engineering Conference (RE
’10), pp. 399–400 (2010)

7. Kaindl, H., Falb, J., Melbinger, St., Bruckmayer, Th.: An Approach to Method-Tool Cou-
pling for Software Development. In: Fifth International Conference on Software Engineer-
ing Advances (ICSEA ’10), pp. 101–106, IEEE (2010)

8. Botelho, L., Fernández, A., Fires, B., Klusch, M., Pereira, L., Santos, T., Pais, P., Vasirani,
M.: Service Discovery. In: Schumacher, M., Helin, H., Schuldt, H. (eds.) CASCOM: Intel-
ligent Service Coordination in the Semantic Web, chapter 10, pp. 205–234. Birkhäuser,
Basel (2008)

9. Czyszczon, A., Zgrzywa, A.: The MapReduce Approach to Web Service Retrieval. In:
Computational Collective Intelligence: Technologies and Applications, LNCS, vol. 8083,
pp. 517–526. Springer, Berlin Heidelberg (2013)

10. Klusch, M..: Semantic Web Service Coordination. In: Schumacher, M., Helin, H., Schuldt,
H. (eds.) CASCOM: Intelligent Service Coordination in the Semantic Web, chapter 4, pp.
59–104. Birkhäuser, Basel (2008)

11. Becker, J., Oliver Müller, O., Woditsch, M.: An Ontology-Based Natural Language Ser-
vice Discovery Engine – Design and Experimental Evaluation. In: 18th European Confer-
ence on Information Systems (ECIS ’10) (2010)

12. Itzik, N., Reinhartz-Berger, I.: Generating Feature Models from Requirements: Structural
vs. Functional Perspectives. In: REVE ’14, SPLC Proceedings – Volume 2: Workshops,
Demonstrations, and Tools, pp. 44–51 (2014)

13. Weston, N., Chitchyan, R., Rashid, A.: A framework for constructing semantically com-
posable feature models from natural language requirements. In: 13th International Soft-
ware Product Line Conference (SPLC ’09), pp. 211–220 (2009)

14. Mannion, M., Kaindl, H.: Using Similarity Metrics for Mining Variability from Software
Metrics. In REVE ’14, SPLC Proceedings – Volume 2: Workshops, Demonstrations, and
Tools, pp. 32–35 (2014)

15. John, I., Eisenbarth, M.: A Decade of Scoping: A Survey. In: 13th International Software
Product Line Conference (SPLC ’09), pp. 31–40 (2009)

16. McGill, A.L.: Alignable and nonalignable differences in causal explanations, Memory
Cognition 30(3), 456–68 (2002)

17. Harman, M., Jia, Y., Krinke, J., Langdon, W., Petke, J., Zhang, Y.: Keynote: Search based
software engineering for software product line engineering: a survey and directions for fu-
ture work, In: 18th International Software Product Line Conference (SPLC ’14), pp. 5–18
(2014)

