104,336 research outputs found

    Asymmetric Totally-corrective Boosting for Real-time Object Detection

    Full text link
    Real-time object detection is one of the core problems in computer vision. The cascade boosting framework proposed by Viola and Jones has become the standard for this problem. In this framework, the learning goal for each node is asymmetric, which is required to achieve a high detection rate and a moderate false positive rate. We develop new boosting algorithms to address this asymmetric learning problem. We show that our methods explicitly optimize asymmetric loss objectives in a totally corrective fashion. The methods are totally corrective in the sense that the coefficients of all selected weak classifiers are updated at each iteration. In contract, conventional boosting like AdaBoost is stage-wise in that only the current weak classifier's coefficient is updated. At the heart of the totally corrective boosting is the column generation technique. Experiments on face detection show that our methods outperform the state-of-the-art asymmetric boosting methods.Comment: 14 pages, published in Asian Conf. Computer Vision 201

    Coarse-to-Fine Annotation Enrichment for Semantic Segmentation Learning

    Full text link
    Rich high-quality annotated data is critical for semantic segmentation learning, yet acquiring dense and pixel-wise ground-truth is both labor- and time-consuming. Coarse annotations (e.g., scribbles, coarse polygons) offer an economical alternative, with which training phase could hardly generate satisfactory performance unfortunately. In order to generate high-quality annotated data with a low time cost for accurate segmentation, in this paper, we propose a novel annotation enrichment strategy, which expands existing coarse annotations of training data to a finer scale. Extensive experiments on the Cityscapes and PASCAL VOC 2012 benchmarks have shown that the neural networks trained with the enriched annotations from our framework yield a significant improvement over that trained with the original coarse labels. It is highly competitive to the performance obtained by using human annotated dense annotations. The proposed method also outperforms among other state-of-the-art weakly-supervised segmentation methods.Comment: CIKM 2018 International Conference on Information and Knowledge Managemen

    ASlib: A Benchmark Library for Algorithm Selection

    Full text link
    The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.Comment: Accepted to be published in Artificial Intelligence Journa
    • …
    corecore