140,133 research outputs found

    FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS

    Get PDF
    Face recognition has been a long standing problem in computer vision. General face recognition is challenging because of large appearance variability due to factors including pose, ambient lighting, expression, size of the face, age, and distance from the camera, etc. There are very accurate techniques to perform face recognition in controlled environments, especially when large numbers of samples are available for each face (individual). However, face identification under uncontrolled( unconstrained) environments or with limited training data is still an unsolved problem. There are two face recognition tasks: face identification (who is who in a probe face set, given a gallery face set) and face verification (same or not, given two faces). In this work, we study both face identification and verification in unconstrained environments. Firstly, we propose a face verification framework that combines Partial Least Squares (PLS) and the One-Shot similarity model[1]. The idea is to describe a face with a large feature set combining shape, texture and color information. PLS regression is applied to perform multi-channel feature weighting on this large feature set. Finally the PLS regression is used to compute the similarity score of an image pair by One-Shot learning (using a fixed negative set). Secondly, we study face identification with image sets, where the gallery and probe are sets of face images of an individual. We model a face set by its covariance matrix (COV) which is a natural 2nd-order statistic of a sample set.By exploring an efficient metric for the SPD matrices, i.e., Log-Euclidean Distance (LED), we derive a kernel function that explicitly maps the covariance matrix from the Riemannian manifold to Euclidean space. Then, discriminative learning is performed on the COV manifold: the learning aims to maximize the between-class COV distance and minimize the within-class COV distance. Sparse representation and dictionary learning have been widely used in face recognition, especially when large numbers of samples are available for each face (individual). Sparse coding is promising since it provides a more stable and discriminative face representation. In the last part of our work, we explore sparse coding and dictionary learning for face verification application. More specifically, in one approach, we apply sparse representations to face verification in two ways via a fix reference set as dictionary. In the other approach, we propose a dictionary learning framework with explicit pairwise constraints, which unifies the discriminative dictionary learning for pair matching (face verification) and classification (face recognition) problems

    Scale Attention for Learning Deep Face Representation: A Study Against Visual Scale Variation

    Full text link
    Human face images usually appear with wide range of visual scales. The existing face representations pursue the bandwidth of handling scale variation via multi-scale scheme that assembles a finite series of predefined scales. Such multi-shot scheme brings inference burden, and the predefined scales inevitably have gap from real data. Instead, learning scale parameters from data, and using them for one-shot feature inference, is a decent solution. To this end, we reform the conv layer by resorting to the scale-space theory, and achieve two-fold facilities: 1) the conv layer learns a set of scales from real data distribution, each of which is fulfilled by a conv kernel; 2) the layer automatically highlights the feature at the proper channel and location corresponding to the input pattern scale and its presence. Then, we accomplish the hierarchical scale attention by stacking the reformed layers, building a novel style named SCale AttentioN Conv Neural Network (\textbf{SCAN-CNN}). We apply SCAN-CNN to the face recognition task and push the frontier of SOTA performance. The accuracy gain is more evident when the face images are blurry. Meanwhile, as a single-shot scheme, the inference is more efficient than multi-shot fusion. A set of tools are made to ensure the fast training of SCAN-CNN and zero increase of inference cost compared with the plain CNN

    Discriminate-and-Rectify Encoders: Learning from Image Transformation Sets

    Get PDF
    The complexity of a learning task is increased by transformations in the input space that preserve class identity. Visual object recognition for example is affected by changes in viewpoint, scale, illumination or planar transformations. While drastically altering the visual appearance, these changes are orthogonal to recognition and should not be reflected in the representation or feature encoding used for learning. We introduce a framework for weakly supervised learning of image embeddings that are robust to transformations and selective to the class distribution, using sets of transforming examples (orbit sets), deep parametrizations and a novel orbit-based loss. The proposed loss combines a discriminative, contrastive part for orbits with a reconstruction error that learns to rectify orbit transformations. The learned embeddings are evaluated in distance metric-based tasks, such as one-shot classification under geometric transformations, as well as face verification and retrieval under more realistic visual variability. Our results suggest that orbit sets, suitably computed or observed, can be used for efficient, weakly-supervised learning of semantically relevant image embeddings.This material is based upon work supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216

    Linear subspace methods in face recognition

    Get PDF
    Despite over 30 years of research, face recognition is still one of the most difficult problems in the field of Computer Vision. The challenge comes from many factors affecting the performance of a face recognition system: noisy input, training data collection, speed-accuracy trade-off, variations in expression, illumination, pose, or ageing. Although relatively successful attempts have been made for special cases, such as frontal faces, no satisfactory methods exist that work under completely unconstrained conditions. This thesis proposes solutions to three important problems: lack of training data, speed-accuracy requirement, and unconstrained environments. The problem of lacking training data has been solved in the worst case: single sample per person. Whitened Principal Component Analysis is proposed as a simple but effective solution. Whitened PCA performs consistently well on multiple face datasets. Speed-accuracy trade-off problem is the second focus of this thesis. Two solutions are proposed to tackle this problem. The first solution is a new feature extraction method called Compact Binary Patterns which is about three times faster than Local Binary Patterns. The second solution is a multi-patch classifier which performs much better than a single classifier without compromising speed. Two metric learning methods are introduced to solve the problem of unconstrained face recognition. The first method called Indirect Neighourhood Component Analysis combines the best ideas from Neighourhood Component Analysis and One-shot learning. The second method, Cosine Similarity Metric Learning, uses Cosine Similarity instead of the more popular Euclidean distance to form the objective function in the learning process. This Cosine Similarity Metric Learning method produces the best result in the literature on the state-of-the-art face dataset: the Labelled Faces in the Wild dataset. Finally, a full face verification system based on our real experience taking part in ICPR 2010 Face Verification contest is described. Many practical points are discussed
    • …
    corecore