76 research outputs found

    Hashing based Answer Selection

    Full text link
    Answer selection is an important subtask of question answering (QA), where deep models usually achieve better performance. Most deep models adopt question-answer interaction mechanisms, such as attention, to get vector representations for answers. When these interaction based deep models are deployed for online prediction, the representations of all answers need to be recalculated for each question. This procedure is time-consuming for deep models with complex encoders like BERT which usually have better accuracy than simple encoders. One possible solution is to store the matrix representation (encoder output) of each answer in memory to avoid recalculation. But this will bring large memory cost. In this paper, we propose a novel method, called hashing based answer selection (HAS), to tackle this problem. HAS adopts a hashing strategy to learn a binary matrix representation for each answer, which can dramatically reduce the memory cost for storing the matrix representations of answers. Hence, HAS can adopt complex encoders like BERT in the model, but the online prediction of HAS is still fast with a low memory cost. Experimental results on three popular answer selection datasets show that HAS can outperform existing models to achieve state-of-the-art performance

    Asymmetric Deep Supervised Hashing

    Full text link
    Hashing has been widely used for large-scale approximate nearest neighbor search because of its storage and search efficiency. Recent work has found that deep supervised hashing can significantly outperform non-deep supervised hashing in many applications. However, most existing deep supervised hashing methods adopt a symmetric strategy to learn one deep hash function for both query points and database (retrieval) points. The training of these symmetric deep supervised hashing methods is typically time-consuming, which makes them hard to effectively utilize the supervised information for cases with large-scale database. In this paper, we propose a novel deep supervised hashing method, called asymmetric deep supervised hashing (ADSH), for large-scale nearest neighbor search. ADSH treats the query points and database points in an asymmetric way. More specifically, ADSH learns a deep hash function only for query points, while the hash codes for database points are directly learned. The training of ADSH is much more efficient than that of traditional symmetric deep supervised hashing methods. Experiments show that ADSH can achieve state-of-the-art performance in real applications
    • …
    corecore