5,819 research outputs found

    Local feature extraction based facial emotion recognition: a survey

    Get PDF
    Notwithstanding the recent technological advancement, the identification of facial and emotional expressions is still one of the greatest challenges scientists have ever faced. Generally, the human face is identified as a composition made up of textures arranged in micro-patterns. Currently, there has been a tremendous increase in the use of local binary pattern based texture algorithms which have invariably been identified to being essential in the completion of a variety of tasks and in the extraction of essential attributes from an image. Over the years, lots of LBP variants have been literally reviewed. However, what is left is a thorough and comprehensive analysis of their independent performance. This research work aims at filling this gap by performing a large-scale performance evaluation of 46 recent state-of-the-art LBP variants for facial expression recognition. Extensive experimental results on the well-known challenging and benchmark KDEF, JAFFE, CK and MUG databases taken under different facial expression conditions, indicate that a number of evaluated state-of-the-art LBP-like methods achieve promising results, which are better or competitive than several recent state-of-the-art facial recognition systems. Recognition rates of 100%, 98.57%, 95.92% and 100% have been reached for CK, JAFFE, KDEF and MUG databases, respectively

    Generalized local N-ary patterns for texture classification

    Full text link
    Local Binary Pattern (LBP) has been well recognised and widely used in various texture analysis applications of computer vision and image processing. It integrates properties of texture structural and statistical texture analysis. LBP is invariant to monotonic gray-scale variations and has also extensions to rotation invariant texture analysis. In recent years, various improvements have been achieved based on LBP. One of extensive developments was replacing binary representation with ternary representation and proposed Local Ternary Pattern (LTP). This paper further generalises the local pattern representation by formulating it as a generalised weight problem of Bachet de Meziriac and proposes Local N-ary Pattern (LNP). The encouraging performance is achieved based on three benchmark datasets when compared with its predecessors. © 2013 IEEE
    • …
    corecore