464,539 research outputs found

    Bohmian mechanics, the quantum-classical correspondence and the classical limit: the case of the square billiard

    Full text link
    Square billiards are quantum systems complying with the dynamical quantum-classical correspondence. Hence an initially localized wavefunction launched along a classical periodic orbit evolves along that orbit, the spreading of the quantum amplitude being controlled by the spread of the corresponding classical statistical distribution. We investigate wavepacket dynamics and compute the corresponding de Broglie-Bohm trajectories in the quantum square billiard. We also determine the trajectories and statistical distribution dynamics for the equivalent classical billiard. Individual Bohmian trajectories follow the streamlines of the probability flow and are generically non-classical. This can also hold even for short times, when the wavepacket is still localized along a classical trajectory. This generic feature of Bohmian trajectories is expected to hold in the classical limit. We further argue that in this context decoherence cannot constitute a viable solution in order to recover classicality.Comment: Figures downgraded to low resolution; To be published in Found. Phys. (2009)

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Finite element surface registration incorporating curvature, volume preservation, and statistical model information

    Get PDF
    We present a novel method for nonrigid registration of 3D surfaces and images. The method can be used to register surfaces by means of their distance images, or to register medical images directly. It is formulated as a minimization problem of a sum of several terms representing the desired properties of a registration result: smoothness, volume preservation, matching of the surface, its curvature, and possible other feature images, as well as consistency with previous registration results of similar objects, represented by a statistical deformation model. While most of these concepts are already known, we present a coherent continuous formulation of these constraints, including the statistical deformation model. This continuous formulation renders the registration method independent of its discretization. The finite element discretization we present is, while independent of the registration functional, the second main contribution of this paper. The local discontinuous Galerkin method has not previously been used in image registration, and it provides an efficient and general framework to discretize each of the terms of our functional. Computational efficiency and modest memory consumption are achieved thanks to parallelization and locally adaptive mesh refinement. This allows for the first time the use of otherwise prohibitively large 3D statistical deformation models

    Chiral Symmetry Breaking and Chiral Polarization: Tests for Finite Temperature and Many Flavors

    Get PDF
    It was recently conjectured that, in SU(3) gauge theories with fundamental quarks, valence spontaneous chiral symmetry breaking is equivalent to condensation of local dynamical chirality and appearance of chiral polarization scale Λch\Lambda_{ch}. Here we consider more general association involving the low-energy layer of chirally polarized modes which, in addition to its width (Λch\Lambda_{ch}), is also characterized by volume density of participating modes (Ω\Omega) and the volume density of total chirality (Ωch\Omega_{ch}). Few possible forms of the correspondence are discussed, paying particular attention to singular cases where Ω\Omega emerges as the most versatile characteristic. The notion of finite-volume "order parameter", capturing the nature of these connections, is proposed. We study the effects of temperature (in Nf_f=0 QCD) and light quarks (in Nf_f=12), both in the regime of possible symmetry restoration, and find agreement with these ideas. In Nf_f=0 QCD, results from several volumes indicate that, at the lattice cutoff studied, the deconfinement temperature TcT_c is strictly smaller than the overlap-valence chiral transition temperature TchT_{ch} in real Polyakov line vacuum. Somewhat similar intermediate phase (in quark mass) is also seen in Nf_f=12. It is suggested that deconfinement in Nf_f=0 is related to indefinite convexity of absolute X-distributions.Comment: 45 pages, 20 figures; v2: reduced the size of submission and fixed references to appendices; v3: minor changes - published for

    Grassmann Variables and the Jaynes-Cummings Model

    Get PDF
    This paper shows that phase space methods using a positive P type distribution function involving both c-number variables (for the cavity mode) and Grassmann variables (for the two level atom) can be used to treat the Jaynes-Cummings model. Although it is a Grassmann function, the distribution function is equivalent to six c-number functions of the two bosonic variables. Experimental quantities are given as bosonic phase space integrals involving the six functions. A Fokker-Planck equation involving both left and right Grassmann differentiation can be obtained for the distribution function, and is equivalent to six coupled equations for the six c-number functions. The approach used involves choosing the canonical form of the (non-unique) positive P distribution function, where the correspondence rules for bosonic operators are non-standard and hence the Fokker-Planck equation is also unusual. Initial conditions, such as for initially uncorrelated states, are used to determine the initial distribution function. Transformations to new bosonic variables rotating at the cavity frequency enables the six coupled equations for the new c-number functions (also equivalent to the canonical Grassmann distribution function) to be solved analytically, based on an ansatz from a 1980 paper by Stenholm. It is then shown that the distribution function is the same as that determined from the well-known solution based on coupled equations for state vector amplitudes of atomic and n-photon product states. The treatment of the simple two fermion mode Jaynes-Cummings model is a useful test case for the future development of phase space Grassmann distribution functional methods for multi-mode fermionic applications in quantum-atom optics.Comment: 57 pages, 0 figures. Version
    • …
    corecore