8,270 research outputs found

    Feasibility, Architecture and Cost Considerations of Using TVWS for Rural Internet Access in 5G

    Get PDF
    The cellular technology is mostly an urban technology that has been unable to serve rural areas well. This is because the traditional cellular models are not economical for areas with low user density and lesser revenues. In 5G cellular networks, the coverage dilemma is likely to remain the same, thus widening the rural-urban digital divide further. It is about time to identify the root cause that has hindered the rural technology growth and analyse the possible options in 5G architecture to address this issue. We advocate that it can only be accomplished in two phases by sequentially addressing economic viability followed by performance progression. We deliberate how various works in literature focus on the later stage of this ‘two-phase’ problem and are not feasible to implement in the first place. We propose the concept of TV band white space (TVWS) dovetailed with 5G infrastructure for rural coverage and show that it can yield cost-effectiveness from a service provider’s perspective

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    Swarm electrification: A comprehensive literature review

    Get PDF
    In the global North, the need to decarbonize power generation is well documented and the challenges faced are endemic to the design of the electrical grids. With networks relying on centralized generation, it can be difficult to replace fossil-fuel power plants with renewable energy sources as generation may be intermittent causing grid instability when there is no ‘spinning reserve’ [1]. In parts of the global south, however, many under-electrified nations have high levels of solar irradiance. This, combined with falling prices for solar panels, is allowing for alternative paths to electrification from costly grid extensions and has resulted in grids built from the bottom up [2]. These grids can vary considerably in scale and capacity, dubbed micro-grids, nano-grids, and pico-grids. They can utilize AC, DC, or both and generally have either a centralized or distributed topology where each design has specific advantages and disadvantages [3]. Bangladesh has seen an unprecedented proliferation of small solar home systems. After performing a case study Groh et al. [4] discovered much of the generated electricity was not being utilized

    Deployment and Implementation Aspects of Radio Frequency Fingerprinting in Cybersecurity of Smart Grids

    Get PDF
    Smart grids incorporate diverse power equipment used for energy optimization in intelligent cities. This equipment may use Internet of Things (IoT) devices and services in the future. To ensure stable operation of smart grids, cybersecurity of IoT is paramount. To this end, use of cryptographic security methods is prevalent in existing IoT. Non-cryptographic methods such as radio frequency fingerprinting (RFF) have been on the horizon for a few decades but are limited to academic research or military interest. RFF is a physical layer security feature that leverages hardware impairments in radios of IoT devices for classification and rogue device detection. The article discusses the potential of RFF in wireless communication of IoT devices to augment the cybersecurity of smart grids. The characteristics of a deep learning (DL)-aided RFF system are presented. Subsequently, a deployment framework of RFF for smart grids is presented with implementation and regulatory aspects. The article culminates with a discussion of existing challenges and potential research directions for maturation of RFF.publishedVersio

    LoRa Enabled Smart Inverters for Microgrid Scenarios with Widespread Elements

    Get PDF
    The introduction of low-power wide-area networks (LPWANs) has changed the image of smart systems, due to their wide coverage and low-power characteristics. This category of communication technologies is the perfect candidate to be integrated into smart inverter control architectures for remote microgrid (MG) applications. LoRaWAN is one of the leading LPWAN technologies, with some appealing features such as ease of implementation and the possibility of creating private networks. This study is devoted to analyze and evaluate the aforementioned integration. Initially, the characteristics of different LPWAN technologies are introduced, followed by an in-depth analysis of LoRa and LoRaWAN. Next, the role of communication in MGs with widespread elements is explained. A point-by-point LoRa architecture is proposed to be implemented in the grid-feeding control structure of smart inverters. This architecture is experimentally evaluated in terms of latency analysis and externally generated power setpoint, following smart inverters in different LoRa settings. The results demonstrate the effectiveness of the proposed LoRa architecture, while the settings are optimally configured. Finally, a hybrid communication system is proposed that can be effectively implemented for remote residential MG management
    • …
    corecore