2,733 research outputs found

    Constrained Finite Receding Horizon Linear Quadratic Control

    Get PDF
    Issues of feasibility, stability and performance are considered for a finite horizon formulation of receding horizon control (RHC) for linear systems under mixed linear state and control constraints. It is shown that for a sufficiently long horizon, a receding horizon policy will remain feasible and result in stability, even when no end constraint is imposed. In addition, offline finite horizon calculations can be used to determine not only a stabilizing horizon length, but guaranteed performance bounds for the receding horizon policy. These calculations are demonstrated on two examples

    An Improved Constraint-Tightening Approach for Stochastic MPC

    Full text link
    The problem of achieving a good trade-off in Stochastic Model Predictive Control between the competing goals of improving the average performance and reducing conservativeness, while still guaranteeing recursive feasibility and low computational complexity, is addressed. We propose a novel, less restrictive scheme which is based on considering stability and recursive feasibility separately. Through an explicit first step constraint we guarantee recursive feasibility. In particular we guarantee the existence of a feasible input trajectory at each time instant, but we only require that the input sequence computed at time kk remains feasible at time k+1k+1 for most disturbances but not necessarily for all, which suffices for stability. To overcome the computational complexity of probabilistic constraints, we propose an offline constraint-tightening procedure, which can be efficiently solved via a sampling approach to the desired accuracy. The online computational complexity of the resulting Model Predictive Control (MPC) algorithm is similar to that of a nominal MPC with terminal region. A numerical example, which provides a comparison with classical, recursively feasible Stochastic MPC and Robust MPC, shows the efficacy of the proposed approach.Comment: Paper has been submitted to ACC 201

    On control of discrete-time state-dependent jump linear systems with probabilistic constraints: A receding horizon approach

    Full text link
    In this article, we consider a receding horizon control of discrete-time state-dependent jump linear systems, particular kind of stochastic switching systems, subject to possibly unbounded random disturbances and probabilistic state constraints. Due to a nature of the dynamical system and the constraints, we consider a one-step receding horizon. Using inverse cumulative distribution function, we convert the probabilistic state constraints to deterministic constraints, and obtain a tractable deterministic receding horizon control problem. We consider the receding control law to have a linear state-feedback and an admissible offset term. We ensure mean square boundedness of the state variable via solving linear matrix inequalities off-line, and solve the receding horizon control problem on-line with control offset terms. We illustrate the overall approach applied on a macroeconomic system

    On generalized terminal state constraints for model predictive control

    Full text link
    This manuscript contains technical results related to a particular approach for the design of Model Predictive Control (MPC) laws. The approach, named "generalized" terminal state constraint, induces the recursive feasibility of the underlying optimization problem and recursive satisfaction of state and input constraints, and it can be used for both tracking MPC (i.e. when the objective is to track a given steady state) and economic MPC (i.e. when the objective is to minimize a cost function which does not necessarily attains its minimum at a steady state). It is shown that the proposed technique provides, in general, a larger feasibility set with respect to existing approaches, given the same computational complexity. Moreover, a new receding horizon strategy is introduced, exploiting the generalized terminal state constraint. Under mild assumptions, the new strategy is guaranteed to converge in finite time, with arbitrarily good accuracy, to an MPC law with an optimally-chosen terminal state constraint, while still enjoying a larger feasibility set. The features of the new technique are illustrated by three examples.Comment: Part of the material in this manuscript is contained in a paper accepted for publication on Automatica and it is subject to Elsevier copyright. The copy of record is available on http://www.sciencedirect.com

    A New Contraction-Based NMPC Formulation Without Stability-Related terminal Constraints

    Full text link
    Contraction-Based Nonlinear Model Predictive Control (NMPC) formulations are attractive because of the generally short prediction horizons they require and the needless use of terminal set computation that are commonly necessary to guarantee stability. However, the inclusion of the contraction constraint in the definition of the underlying optimization problem often leads to non standard features such as the need for multi-step open-loop application of control sequences or the use of multi-step memorization of the contraction level that may induce unfeasibility in presence of unexpected disturbance. This paper proposes a new formulation of contraction-based NMPC in which no contraction constraint is explicitly involved. Convergence of the resulting closed-loop behavior is proved under mild assumptions.Comment: accepted in short version IFAC Nolcos 2016. submitted to Automatica as a technical communiqu
    corecore