This manuscript contains technical results related to a particular approach
for the design of Model Predictive Control (MPC) laws. The approach, named
"generalized" terminal state constraint, induces the recursive feasibility of
the underlying optimization problem and recursive satisfaction of state and
input constraints, and it can be used for both tracking MPC (i.e. when the
objective is to track a given steady state) and economic MPC (i.e. when the
objective is to minimize a cost function which does not necessarily attains its
minimum at a steady state). It is shown that the proposed technique provides,
in general, a larger feasibility set with respect to existing approaches, given
the same computational complexity. Moreover, a new receding horizon strategy is
introduced, exploiting the generalized terminal state constraint. Under mild
assumptions, the new strategy is guaranteed to converge in finite time, with
arbitrarily good accuracy, to an MPC law with an optimally-chosen terminal
state constraint, while still enjoying a larger feasibility set. The features
of the new technique are illustrated by three examples.Comment: Part of the material in this manuscript is contained in a paper
accepted for publication on Automatica and it is subject to Elsevier
copyright. The copy of record is available on http://www.sciencedirect.com