808 research outputs found

    Characterizing CDMA downlink feasibility via effective interference

    Get PDF
    This paper models and analyses downlink power assignment feasibility in Code Division Multiple Access (CDMA) mobile networks. By discretizing the area into small segments, the power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a closed-form analytical expression of the so-called Perron-Frobenius eigenvalue of that matrix, which provides a quick assessment of the feasibility of the power assignment for each distribution of calls over the segments. Although the obtained relation is non-linear, it basically provides an effective interference characterisation of downlink feasibility. Our results allow for a fast evaluation of outage and blocking probabilities, and enable a quick evaluation of feasibility that may be used for Call Acceptance Control. \u

    Design and Experimental Evaluation of a Database-Assisted V2V Communications System Over TV White Space

    Get PDF
    Automakers are increasingly employing wireless communications technologies into vehicles, which are expected to be one of the primary tools to improve traffic flow and traffic safety. Anticipating a significant increase in the accompanying spectrum and capacity requirements, in this paper, we speculate about using dynamic spectrum access in general, and TV white space in particular for vehicular communications. To this end, we describe the concept, design, general architecture and operation principles of a vehicle-to-vehicle communications system over TV white space. This system makes dual use of a geolocation database and spectrum sensing to understand spectrum vacancies. In this architecture, whenever a database query result is available, that information is prioritized over sensing results and when the database access is disrupted, vehicles rely on the spectrum sensing results. After describing the general concepts, we numerically analyze and evaluate the benefits of using proxy vehicles for geolocation database access. Finally, we present the middleware-centric implementation and field test results of a multi-hop vehicle-to-vehicle communications system over the licensed TV-band. We present results regarding multi-hop throughput, delay, jitter, channel switching and database access latencies. This study complements our previous work which described spectrum sensing based vehicle-to-vehicle communications design and testing

    Opportunistic Spectrum Utilization for Vehicular Communication Networks

    Get PDF
    Recently, vehicular networks (VANETs), has become the key technology of the next-generation intelligent transportation systems (ITS). By incorporating wireless communication and networking capabilities into automobiles, information can be efficiently and reliably disseminated among vehicles, road side units, and infrastructure, which enables a number of novel applications enhancing the road safety and providing the drivers/passengers with an information-rich environment. With the development of mobile Internet, people want to enjoy the Internet access in vehicles just as anywhere else. This fact, along with the soaring number of connected vehicles and the emerging data-craving applications and services, has led to a problem of spectrum scarcity, as the current spectrum bands for VANETs are difficult to accommodate the increasing mobile data demands. In this thesis, we aim to solve this problem by utilizing extra spectrum bands, which are not originally allocated for vehicular communications. In this case, the spectrum usage is based on an opportunistic manner, where the spectrum is not available if the primary system is active, or the vehicle is outside the service coverage due to the high mobility. We will analyze the features of such opportunistic spectrum, and design efficient protocols to utilize the spectrum for VANETs. Firstly, the application of cognitive radio technologies in VANETs, termed CR-VANETs, is proposed and analyzed. In CR-VANETs, the channel availability is severely affected by the street patterns and the mobility features of vehicles. Therefore, we theoretically analyze the channel availability in urban scenario, and obtain its statistics. Based on the knowledge of channel availability, an efficient channel access scheme for CR-VANETs is then designed and evaluated. Secondly, using WiFi to deliver mobile data, named WiFi offloading, is employed to deliver the mobile data on the road, in order to relieve the burden of the cellular networks, and provide vehicular users with a cost-effective data pipe. Using queueing theory, we analyze the offloading performance with respect to the vehicle mobility model and the users' QoS preferences. Thirdly, we employ device-to-device (D2D) communications in VANETs to further improve the spectrum efficiency. In a vehicular D2D (V-D2D) underlaying cellular network, proximate vehicles can directly communicate with each other with a relatively small transmit power, rather than traversing the base station. Therefore, many current transmissions can co-exist on one spectrum resource block. By utilizing the spatial diversity, the spectrum utilization is greatly enhanced. We study the performance of the V-D2D underlaying cellular network, considering the vehicle mobility and the street pattern. We also investigate the impact of the preference of D2D/cellular mode on the interference and network throughput, and obtain the theoretical results. In summary, the analysis and schemes developed in this thesis are useful to understand the future VANETs with heterogeneous access technologies, and provide important guidelines for designing and deploying such networks

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions
    • ā€¦
    corecore