108 research outputs found

    Capacity Analysis of LTE-Advanced HetNets with Reduced Power Subframes and Range Expansion

    Get PDF
    The time domain inter-cell interference coordination techniques specified in LTE Rel. 10 standard improves the throughput of picocell-edge users by protecting them from macrocell interference. On the other hand, it also degrades the aggregate capacity in macrocell because the macro base station (MBS) does not transmit data during certain subframes known as almost blank subframes. The MBS data transmission using reduced power subframes was standardized in LTE Rel. 11, which can improve the capacity in macrocell while not causing high interference to the nearby picocells. In order to get maximum benefit from the reduced power subframes, setting the key system parameters, such as the amount of power reduction, carries critical importance. Using stochastic geometry, this paper lays down a theoretical foundation for the performance evaluation of heterogeneous networks with reduced power subframes and range expansion bias. The analytic expressions for average capacity and 5th percentile throughput are derived as a function of transmit powers, node densities, and interference coordination parameters in a heterogeneous network scenario, and are validated through Monte Carlo simulations. Joint optimization of range expansion bias, power reduction factor, scheduling thresholds, and duty cycle of reduced power subframes are performed to study the trade-offs between aggregate capacity of a cell and fairness among the users. To validate our analysis, we also compare the stochastic geometry based theoretical results with the real MBS deployment (in the city of London) and the hexagonal-grid model. Our analysis shows that with optimum parameter settings, the LTE Rel. 11 with reduced power subframes can provide substantially better performance than the LTE Rel. 10 with almost blank subframes, in terms of both aggregate capacity and fairness.Comment: Submitted to EURASIP Journal on Wireless Communications and Networking (JWCN

    Towards UAV Assisted 5G Public Safety Network

    Get PDF
    Ensuring ubiquitous mission-critical public safety communications (PSC) to all the first responders in the public safety network is crucial at an emergency site. The first responders heavily rely on mission-critical PSC to save lives, property, and national infrastructure during a natural or human-made emergency. The recent advancements in LTE/LTE-Advanced/5G mobile technologies supported by unmanned aerial vehicles (UAV) have great potential to revolutionize PSC. However, limited spectrum allocation for LTE-based PSC demands improved channel capacity and spectral efficiency. An additional challenge in designing an LTE-based PSC network is achieving at least 95% coverage of the geographical area and human population with broadband rates. The coverage requirement and efficient spectrum use in the PSC network can be realized through the dense deployment of small cells (both terrestrial and aerial). However, there are several challenges with the dense deployment of small cells in an air-ground heterogeneous network (AG-HetNet). The main challenges which are addressed in this research work are integrating UAVs as both aerial user and aerial base-stations, mitigating inter-cell interference, capacity and coverage enhancements, and optimizing deployment locations of aerial base-stations. First, LTE signals were investigated using NS-3 simulation and software-defined radio experiment to gain knowledge on the quality of service experienced by the user equipment (UE). Using this understanding, a two-tier LTE-Advanced AG-HetNet with macro base-stations and unmanned aerial base-stations (UABS) is designed, while considering time-domain inter-cell interference coordination techniques. We maximize the capacity of this AG-HetNet in case of a damaged PSC infrastructure by jointly optimizing the inter-cell interference parameters and UABS locations using a meta-heuristic genetic algorithm (GA) and the brute-force technique. Finally, considering the latest specifications in 3GPP, a more realistic three-tier LTE-Advanced AG-HetNet is proposed with macro base-stations, pico base-stations, and ground UEs as terrestrial nodes and UABS and aerial UEs as aerial nodes. Using meta-heuristic techniques such as GA and elitist harmony search algorithm based on the GA, the critical network elements such as energy efficiency, inter-cell interference parameters, and UABS locations are all jointly optimized to maximize the capacity and coverage of the AG-HetNet

    Coverage Performance Analysis of FeICIC Low Power Subframes

    Get PDF
    Although the Almost Blank Subframes (ABSF) proposed in heterogeneous cellular networks can enhance the performance of the Cell Range Expansion (CRE) User Equipments (UEs), it significantly degrades macro-cell total throughput. To address this problem, the Low Power Subframes (LPSF) are encouraged to be applied in macro-cell center region by the Further-enhanced Inter-cell Interference Coordination (FeICIC). However, the residual power of the LPSF which interferes the CRE UEs, and the proportion of the LPSF affect the downlink throughput together. To achieve a better rate coverage probability, appropriate LPSF power and proportion are required. In this paper, the analytical results of the overall Signal to Interference and Noise Ratio (SINR) coverage probability and the rate coverage probability are derived under the stochastic geometric framework. The optimal region bias ranges for maximizing the rate coverage probability are also analysed. The results show that the ABSF still outperform the LPSF in terms of rate with the optimal range expansion bias, but lead to a heavier burden on the back-haul of the pico-cell. However, with a static range expansion bias, the LPSF provide better rate coverage than the ABSF. Also, in a low range expansion scenario, the reduced power of the LPSF has negligible effect on the rate coverage with the optimal resource partitioning

    A Game Theoretic Distributed Algorithm for FeICIC Optimization in LTE-A HetNets

    Get PDF
    International audienceIn order to obtain good network performance in Long Term Evolution-Advanced (LTE-A) heterogeneous networks (HetNets), enhanced inter-cell interference coordination (eICIC) and further enhanced inter-cell interference coordination (FeICIC) have been proposed by LTE standardization bodies to address the entangled inter-cell interference and the user association problems. We propose distributed algorithms based on the exact potential game framework for both eICIC and FeICIC optimizations. We demonstrate via simulations a 64% gain on energy efficiency (EE) achieved by eICIC and another 17% gain on EE achieved by FeICIC. We also show that FeICIC can bring other significant gains in terms of cell-edge throughput, spectral efficiency (SE) and fairness among user throughputs. Moreover, we propose a downlink scheduler based on a cake-cutting algorithm that can further improve the performance of the optimization algorithms compared to conventional schedulers

    Solar Energy Empowered 5G Cognitive Metro-Cellular Networks

    Get PDF
    Harvesting energy from natural (solar, wind, vibration, etc.) and synthesized (microwave power transfer) sources is envisioned as a key enabler for realizing green wireless networks. Energy efficient scheduling is one of the prime objectives in emerging cognitive radio platforms. To that end, in this article we present a comprehensive framework to characterize the performance of a cognitive metro-cellular network empowered by solar energy harvesting. The proposed model allows designers to capture both the spatial and temporal dynamics of the energy field and the mobile user traffic. A new definition for the “energy outage probability” metric, which characterizes the self-sustainable operation of the base stations under energy harvesting, is proposed, and the process for quantifying is described with the help of a case study for various UK cities. It is shown that the energy outage probability is strongly coupled with the path-loss exponent, required quality of service, and base station and user density. Moreover, the energy outage probability varies both on a daily and yearly basis depending on the solar geometry. It is observed that even in winter, BSs can run for three to six hours without any purchase of energy from the power grid by harvesting instantaneous energy
    corecore