492 research outputs found

    Automated Fault Tolerant Control Synthesis based on Discrete Games

    Get PDF

    Passive Fault Tolerant Control of Piecewise Affine Systems Based on H Infinity Synthesis

    Get PDF
    International audienceIn this paper we design a passive fault tolerant controller against actuator faults for discretetime piecewise affine (PWA) systems. By using dissipativity theory and H analysis, fault tolerant state feedback controller design is expressed as a set of Linear Matrix Inequalities (LMIs). In the current paper, the PWA system switches not only due to the state but also due to the control input. The method is applied on a large scale livestock ventilation model

    Active Fault Tolerant Control of Livestock Stable Ventilation System

    Get PDF

    Combinatorial Hybrid Systems

    Get PDF

    Fault tolerant control for bimodal piecewise affine systems

    Get PDF
    This thesis addresses the design of fault-tolerant controllers and a fault identification technique for bimodal piecewise affine systems. A new fault-tolerant control methodology is presented. Fault-tolerant, state feedback controllers are synthesized for piecewise-affine (PWA) systems while minimizing an upper bound on the expected value of a quadratic cost function. The controllers are designed to deal with partial loss of control authority in the closed loop PWA system. The proposed controller design technique stabilizes and satisfies performance bounds for both the nominal and faulty systems. Another contribution is the development of a fault identification technique for bimodal piecewise affine (PWA) systems. A Luenberger-based observer structure is applied to estimate partial loss of control authority in PWA systems. More specifically, the unknown value of the fault parameter is estimated by an observer equation obtained from a Lyapunov function. The design procedure is formulated as a set of linear matrix inequalities (LMIs) and guarantees asymptotic stability of the estimation error, provided the norm of the input is upper and lower bounded by positive constants. The new PWA identification method is illustrated in a numerical example. Asa third contribution, an active fault-tolerant controller structure is proposed for bimodal PWA systems. The new active fault-tolerant controller structure is illustrated in a numerical example

    Fault tolerant control for partial loss of control authority in aircraft using piecewise affine slab models

    Get PDF
    In this paper, a new fault tolerant control methodology is proposed for partial loss of control authority in aircraft using piecewise affine (PWA) slab models while minimizing an upper bound on a quadratic cost function. The proposed controller stabilizes and satisfies performance bounds for both the nominal and faulty systems. The controller design criteria are cast as a set of Linear Matrix Inequalities (LMIs) that can be solved efficiently. The new technique is illustrated in a numerical example for the Beechcraft 99 aircraft model

    An integral sliding-mode parallel control approach for general nonlinear systems via piecewise affine linear models

    Full text link
    The fundamental problem of stabilizing a general nonaffine continuous-time nonlinear system is investigated via piecewise affine linear models (PALMs) in this article. A novel integral sliding-mode parallel control (ISMPC) approach is developed, where an uncertain piecewise affine system (PWA) is constructed to model a nonaffine continuous-time nonlinear system equivalently on a compact region containing the origin. A piecewise sliding-mode parallel controller is designed to globally stabilize the PALM and, consequently, to semiglobally stabilize the original nonlinear system. The proposed scheme enjoys three favorable features: (i) some restrictions on the system input channel are eliminated, thus the developed method is more relaxed compared with the published approaches; (ii) it is convenient to be used to deal with both matched and unmatched uncertainties of the system; and (iii) the proposed piecewise parallel controller generates smooth control signals even around the boundaries between different subspaces, which makes the developed control strategy more implementable and reliable. Moreover, we provide discussions about the universality analysis of the developed control strategy for two kinds of typical nonlinear systems. Simulation results from two numerical examples further demonstrate the performance of the developed control approach
    corecore