6 research outputs found

    Fault Tolerant Services for Safe In-Car Embedded Systems

    Get PDF
    http://www.taylorandfrancis.com/Due to the increasing criticality of the functions in terms of safety, embedded automotive systems must now respect stringent dependability constraints despite the faults that may occur in a very harsh environment. In a context where critical functions are distributed over the network, the communication system plays a major role. First, we discuss the main services and functionalities that a communication system should offer for easying the design of fault-tolerant applications in the automotive context. Then, we review the features of the protocols that are currently considered for being used and, finally, we highlight areas where developments are still needed

    A low-cost secure iot mechanism for monitoring and controlling polygeneration microgrids

    Get PDF
    The use of Internet-connected devices at homes has increased to monitor energy consumption. Furthermore, renewable energy sources have also increased, reducing electricity bills. However, the high cost of the equipment limits the use of these technologies. This paper presents a low-cost secured-distributed Internet of Things (IoT) system to monitor and control devices connected in a polygeneration microgrid, as a combined power system for local loads with renewable sources. The proposed mechanism includes a Wireless Sensor Actuator Networked Control System that links network nodes using the IEEE 802.15.4 standard. The Internet communication enables the monitor and control of devices using a mobile application to increase the efficiency. In addition, security mechanisms are implemented at several levels including the authentication, encryption, and decryption of the transmitted data. Furthermore, a firewall and a network intrusion detection-and-prevention program are implemented to increase the system protection against cyber-attack. The feasibility of the proposed solution was demonstrated using a DC microgrid test bench consisting of a diverse range of renewable energy sources and loads

    Interoperability issues on the design of safe in-vehicle embedded systems

    Get PDF
    International audienceThe design of in-vehicle embedded systems follows a complex multi-partner development process. Carmakers specify the whole system and have to integrate several parts of the system provided by different suppliers. Specification as well as integration are concerned with properties requirements (safety, performance, cost, etc.) and validation issues. On another hand, the economical aspects lead suppliers to reuse previously developped components. At least, the portability of components is a necessary means that enable the flexibility of the development. For short, the problem when developping an automotive embedded system is the interoperability between components. To tackle this problem, two complementary solutions have been proposed by the automotive industry. The first one is the definition of a reference model for embedded systems that identifies component types and the formal rules of their interactions together. The other solution is a modeling language that can be shared by the different actors. In this paper, we show how automotive industry has contributed to these two aspects

    Fault-Tolerant Services for Safe In-Car Embedded Systems

    No full text
    corecore