22,661 research outputs found

    Pinwheel Scheduling for Fault-tolerant Broadcast Disks in Real-time Database Systems

    Full text link
    The design of programs for broadcast disks which incorporate real-time and fault-tolerance requirements is considered. A generalized model for real-time fault-tolerant broadcast disks is defined. It is shown that designing programs for broadcast disks specified in this model is closely related to the scheduling of pinwheel task systems. Some new results in pinwheel scheduling theory are derived, which facilitate the efficient generation of real-time fault-tolerant broadcast disk programs.National Science Foundation (CCR-9308344, CCR-9596282

    A Fault-Tolerant Scheduling Algorithm using Hybrid Overloading Technology for Dynamic Grouping based Multiprocessor Systems

    Get PDF
    In order to extend the application area of fault-tolerant scheduling algorithm based on hybrid overloading for multiprocessor and increase the fault-tolerant number of processors, we propose a new fault-tolerant scheduling algorithm, which is based on hybrid overloading and dynamic grouping for multiprocessor by combining logic grouping strategy for processors in primary backup overloading and backup backup overloading.This algorithm presents the formalization of the dynamic grouping for processors in fault-tolerant scheduling based on hybrid overloading and enlarges the task number included in overloading task link. In the process of fault-tolerant scheduling the processors are dynamically divided into some groups based on overloading task link, so as to keep good scheduling success ratio and enhance the fault-tolerant performance of processors. Both theoretical analysis and simulation experiment prove this algorithm’s effectiveness respectively

    Energy-Efficient Fault-Tolerant Scheduling Algorithm for Real-Time Tasks in Cloud-Based 5G Networks

    Full text link
    © 2013 IEEE. Green computing has become a hot issue for both academia and industry. The fifth-generation (5G) mobile networks put forward a high request for energy efficiency and low latency. The cloud radio access network provides efficient resource use, high performance, and high availability for 5G systems. However, hardware and software faults of cloud systems may lead to failure in providing real-time services. Developing fault tolerance technique can efficiently enhance the reliability and availability of real-time cloud services. The core idea of fault-tolerant scheduling algorithm is introducing redundancy to ensure that the tasks can be finished in the case of permanent or transient system failure. Nevertheless, the redundancy incurs extra overhead for cloud systems, which results in considerable energy consumption. In this paper, we focus on the problem of how to reduce the energy consumption when providing fault tolerance. We first propose a novel primary-backup-based fault-tolerant scheduling architecture for real-time tasks in the cloud environment. Based on the architecture, we present an energy-efficient fault-tolerant scheduling algorithm for real-time tasks (EFTR). EFTR adopts a proactive strategy to increase the system processing capacity and employs a rearrangement mechanism to improve the resource utilization. Simulation experiments are conducted on the CloudSim platform to evaluate the feasibility and effectiveness of EFTR. Compared with the existing fault-tolerant scheduling algorithms, EFTR shows excellent performance in energy conservation and task schedulability

    Framework for simulation of fault tolerant heterogeneous multiprocessor system-on-chip

    Full text link
    Due to the ever growing requirement in high performance data computation, current Uniprocessor systems fall short of hand to meet critical real-time performance demands in (i) high throughput (ii) faster processing time (iii) low power consumption (iv) design cost and time-to-market factors and more importantly (v) fault tolerant processing. Shifting the design trend to MPSOCs is a work-around to meet these challenges. However, developing efficient fault tolerant task scheduling and mapping techniques requires optimized algorithms that consider the various scenarios in Multiprocessor environments. Several works have been done in the past few years which proposed simulation based frameworks for scheduling and mapping strategies that considered homogenous systems and error avoidance techniques. However, most of these works inadequately describe today\u27s MPSOC trend because they were focused on the network domain and didn\u27t consider heterogeneous systems with fault tolerant capabilities; In order to address these issues, this work proposes (i) a performance driven scheduling algorithm (PD SA) based on simulated annealing technique (ii) an optimized Homogenous-Workload-Distribution (HWD) Multiprocessor task mapping algorithm which considers the dynamic workload on processors and (iii) a dynamic Fault Tolerant (FT) scheduling/mapping algorithm to employ robust application processing system. The implementation was accompanied by a heterogeneous Multiprocessor system simulation framework developed in systemC/C++. The proposed framework reads user data, set the architecture, execute input task graph and finally generate performance variables. This framework alleviates previous work issues with respect to (i) architectural flexibility in number-of-processors, processor types and topology (ii) optimized scheduling and mapping strategies and (iii) fault-tolerant processing capability focusing more on the computational domain; A set of random as well as application specific STG benchmark suites were run on the simulator to evaluate and verify the performance of the proposed algorithms. The simulations were carried out for (i) scheduling policy evaluation (ii) fault tolerant evaluation (iii) topology evaluation (iv) Number of processor evaluation (v) Mapping policy evaluation and (vi) Processor Type evaluation. The results showed that PD scheduling algorithm showed marginally better performance than EDF with respect to utilization, Execution-Time and Power factors. The dynamic Fault Tolerant implementation showed to be a viable and efficient strategy to meet real-time constraints without posing significant system performance degradation. Torus topology gave better performance than Tile with respect to task completion time and power factors. Executing highly heterogeneous Tasks showed higher power consumption and execution time. Finally, increasing the number of processors showed a decrease in average Utilization but improved task completion time and power consumption; Based on the simulation results, the system designer can compare tradeoffs between a various design choices with respect to the performance requirement specifications. In general, designing an optimized Multiprocessor scheduling and mapping strategy with added fault tolerant capability will enable to develop efficient Multiprocessor systems which meet future performance goal requirements. This is the substance of this work

    Online Scheduled Execution of Quantum Circuits Protected by Surface Codes

    Full text link
    Quantum circuits are the preferred formalism for expressing quantum information processing tasks. Quantum circuit design automation methods mostly use a waterfall approach and consider that high level circuit descriptions are hardware agnostic. This assumption has lead to a static circuit perspective: the number of quantum bits and quantum gates is determined before circuit execution and everything is considered reliable with zero probability of failure. Many different schemes for achieving reliable fault-tolerant quantum computation exist, with different schemes suitable for different architectures. A number of large experimental groups are developing architectures well suited to being protected by surface quantum error correcting codes. Such circuits could include unreliable logical elements, such as state distillation, whose failure can be determined only after their actual execution. Therefore, practical logical circuits, as envisaged by many groups, are likely to have a dynamic structure. This requires an online scheduling of their execution: one knows for sure what needs to be executed only after previous elements have finished executing. This work shows that scheduling shares similarities with place and route methods. The work also introduces the first online schedulers of quantum circuits protected by surface codes. The work also highlights scheduling efficiency by comparing the new methods with state of the art static scheduling of surface code protected fault-tolerant circuits.Comment: accepted in QI
    corecore