3,830 research outputs found

    Energy-aware distributed routing algorithm to tolerate network failure in wireless sensor networks

    Get PDF
    Wireless Sensor Networks are prone to link/node failures due to various environmental hazards such as interference and internal faults in deployed sensor nodes. Such failures can result in a disconnection in part of the network and the sensed data being unable to obtain a route to the sink(s), i.e. a network failure. Network failures potentially degrade the Quality of Service (QoS) of Wireless Sensor Networks (WSNs). It is very difficult to monitor network failures using a manual operator in a harsh or hostile environment. In such environments, communication links can easy fail because of node unequal energy depletion and hardware failure or invasion. Thus it is desirable that deployed sensor nodes are capable of overcoming network failures. In this paper, we consider the problem of tolerating network failures seen by deployed sensor nodes in a WSN. We first propose a novel clustering algorithm for WSNs, termed Distributed Energy Efficient Heterogeneous Clustering (DEEHC) that selects cluster heads according to the residual energy of deployed sensor nodes with the aid of a secondary timer. During the clustering phase, each sensor node finds k-vertex disjoint paths to cluster heads depending on the energy level of its neighbor sensor nodes. We then present a k-Vertex Disjoint Path Routing (kVDPR) algorithm where each cluster head finds k-vertex disjoint paths to the base station and relays their aggregate data to the base station. Furthermore, we also propose a novel Route Maintenance Mechanism (RMM) that can repair k-vertex disjoint paths throughout the monitoring session. The resulting WSNs become tolerant to k-1 failures in the worst case. The proposed scheme has been extensively tested using various network scenarios and compared to the existing state of the art approaches to show the effectiveness of the proposed scheme

    AWARE: Platform for Autonomous self-deploying and operation of Wireless sensor-actuator networks cooperating with unmanned AeRial vehiclEs

    Get PDF
    This paper presents the AWARE platform that seeks to enable the cooperation of autonomous aerial vehicles with ground wireless sensor-actuator networks comprising both static and mobile nodes carried by vehicles or people. Particularly, the paper presents the middleware, the wireless sensor network, the node deployment by means of an autonomous helicopter, and the surveillance and tracking functionalities of the platform. Furthermore, the paper presents the first general experiments of the AWARE project that took place in March 2007 with the assistance of the Seville fire brigades

    An ANFIS estimator based data aggregation scheme for fault tolerant Wireless Sensor Networks

    Get PDF
    AbstractWireless Sensor Networks (WSNs) are used widely in many mission critical applications like battlefield surveillance, environmental monitoring, forest fire monitoring etc. A lot of research is being done to reduce the energy consumption, enhance the network lifetime and fault tolerance capability of WSNs. This paper proposes an ANFIS estimator based data aggregation scheme called Neuro-Fuzzy Optimization Model (NFOM) for the design of fault-tolerant WSNs. The proposed scheme employs an Adaptive Neuro-Fuzzy Inference System (ANFIS) estimator for intra-cluster and inter-cluster fault detection in WSNs. The Cluster Head (CH) acts as the intra-cluster fault detection and data aggregation manager. It identifies the faulty Non-Cluster Head (NCH) nodes in a cluster by the application of the proposed ANFIS estimator. The CH then aggregates data from only the normal NCHs in that cluster and forwards it to the high-energy gateway nodes. The gateway nodes act as the inter-cluster fault detection and data aggregation manager. They pro-actively identify the faulty CHs by the application of the proposed ANFIS estimator and perform inter-cluster fault tolerant data aggregation. The simulation results confirm that the proposed NFOM data aggregation scheme can significantly improve the network performance as compared to other existing schemes with respect to different performance metrics
    • …
    corecore