3 research outputs found

    Star Structure Connectivity of Folded hypercubes and Augmented cubes

    Full text link
    The connectivity is an important parameter to evaluate the robustness of a network. As a generalization, structure connectivity and substructure connectivity of graphs were proposed. For connected graphs GG and HH, the HH-structure connectivity κ(G;H)\kappa(G; H) (resp. HH-substructure connectivity κs(G;H)\kappa^{s}(G; H)) of GG is the minimum cardinality of a set of subgraphs FF of GG that each is isomorphic to HH (resp. to a connected subgraph of HH) so that G−FG-F is disconnected or the singleton. As popular variants of hypercubes, the nn-dimensional folded hypercubes FQnFQ_{n} and augmented cubes AQnAQ_{n} are attractive interconnected network prototypes for multiple processor systems. In this paper, we obtain that κ(FQn;K1,m)=κs(FQn;K1,m)=⌈n+12⌉\kappa(FQ_{n};K_{1,m})=\kappa^{s}(FQ_{n};K_{1,m})=\lceil\frac{n+1}{2}\rceil for 2⩽m⩽n−12\leqslant m\leqslant n-1, n⩾7n\geqslant 7, and κ(AQn;K1,m)=κs(AQn;K1,m)=⌈n−12⌉\kappa(AQ_{n};K_{1,m})=\kappa^{s}(AQ_{n};K_{1,m})=\lceil\frac{n-1}{2}\rceil for 4⩽m⩽3n−1544\leqslant m\leqslant \frac{3n-15}{4}

    The star-structure connectivity and star-substructure connectivity of hypercubes and folded hypercubes

    Full text link
    As a generalization of vertex connectivity, for connected graphs GG and TT, the TT-structure connectivity κ(G,T)\kappa(G, T) (resp. TT-substructure connectivity κs(G,T)\kappa^{s}(G, T)) of GG is the minimum cardinality of a set of subgraphs FF of GG that each is isomorphic to TT (resp. to a connected subgraph of TT) so that G−FG-F is disconnected. For nn-dimensional hypercube QnQ_{n}, Lin et al. [6] showed κ(Qn,K1,1)=κs(Qn,K1,1)=n−1\kappa(Q_{n},K_{1,1})=\kappa^{s}(Q_{n},K_{1,1})=n-1 and κ(Qn,K1,r)=κs(Qn,K1,r)=⌈n2⌉\kappa(Q_{n},K_{1,r})=\kappa^{s}(Q_{n},K_{1,r})=\lceil\frac{n}{2}\rceil for 2≤r≤32\leq r\leq 3 and n≥3n\geq 3. Sabir et al. [11] obtained that κ(Qn,K1,4)=κs(Qn,K1,4)=⌈n2⌉\kappa(Q_{n},K_{1,4})=\kappa^{s}(Q_{n},K_{1,4})=\lceil\frac{n}{2}\rceil for n≥6n\geq 6, and for nn-dimensional folded hypercube FQnFQ_{n}, κ(FQn,K1,1)=κs(FQn,K1,1)=n\kappa(FQ_{n},K_{1,1})=\kappa^{s}(FQ_{n},K_{1,1})=n, κ(FQn,K1,r)=κs(FQn,K1,r)=⌈n+12⌉\kappa(FQ_{n},K_{1,r})=\kappa^{s}(FQ_{n},K_{1,r})=\lceil\frac{n+1}{2}\rceil with 2≤r≤32\leq r\leq 3 and n≥7n\geq 7. They proposed an open problem of determining K1,rK_{1,r}-structure connectivity of QnQ_n and FQnFQ_n for general rr. In this paper, we obtain that for each integer r≥2r\geq 2, κ(Qn;K1,r)=κs(Qn;K1,r)=⌈n2⌉\kappa(Q_{n};K_{1,r})=\kappa^{s}(Q_{n};K_{1,r})=\lceil\frac{n}{2}\rceil and κ(FQn;K1,r)=κs(FQn;K1,r)=⌈n+12⌉\kappa(FQ_{n};K_{1,r})=\kappa^{s}(FQ_{n};K_{1,r})= \lceil\frac{n+1}{2}\rceil for all integers nn larger than rr in quare scale. For 4≤r≤64\leq r\leq 6, we separately confirm the above result holds for QnQ_n in the remaining cases

    Fault tolerance of hypercubes and folded hypercubes

    No full text
    NSFC [11301440, 11171279]; Xiamen University of Technology [YKJ12030R]; Foundation to the Educational Committee of Fujian [JA13240, JA13025, JA13034]; Natural Science Foundation of Fujian Province [2013J05006]; Natural Sciences Foundation of Guangxi Province [2012GXNSFBA053005, 2011GXNSFA018144]Let G = (V, E) be a connected graph. The conditional edge connectivity is the cardinality of the minimum edge cuts, if any, whose deletion disconnects and each component of has . We assume that is an edge set, is called edge extra-cut, if is not connected and each component of has more than vertices. The edge extraconnectivity is the cardinality of the minimum edge extra-cuts. In this paper, we study the conditional edge connectivity and edge extraconnectivity of hypercubes and folded hypercubes
    corecore