2 research outputs found

    Data validation: a case study for a feed-drive monitoring

    Get PDF
    The monitoring of machine-tools implicated in the metal cutting process is the subject of increasing developments because of requests on control, reliability, availability of machine-tools and on work-piece quality. The use of computers contributes to a better machine and process monitoring by enabling the implementation of complex algorithms for control, monitoring, … The improvement of monitoring of the main machine-tools devices, the feed-drives and the spindles that drive the cutting process, can be realised by estimating their fault sensitive physical parameters from their continuous-time model. We have chosen to use a continuous-time ARX model. We particularly focus on slow time varying phenomena. This estimation should run while there is no machining process to avoid false detection of faults on the machine due to the cutting process. High speed motions, that occur at least for each tool exchange, are exploited. Some functional constraints require the use of an off-line estimation method, we have chosen an ordinary least squares method. Estimating the physical parameters is insufficient to obtain an efficient monitoring. A measurement analysis and validation are necessary as the validation of the estimated physical parameters. An approach of the measurement and physical parameter estimation validation for a NC machine-tool feed-drive is proposed
    corecore