13,351 research outputs found

    Fault tolerant clos network

    Get PDF
    Multistage interconnection networks, or MINs, provide paths between functional modules in multiprocessor systems. The MINs are usually segmented into several stages. Each stage connects inputs to appropriate links of the next stage so that the cumulative effect of all the stages satisfies input-output connection requirements. This thesis deals with a fault tolerant Clos network. The fault tolerance technique involves addition of extra switches per stage to compensate for any switch failure The reliability analysis of both ordinary and fault tolerant Clos networks is presented. The optimal number of extra switches required to get the best reliability results has been analyzed

    Subcube embeddability and fault tolerance of augmented hypercubes

    Full text link
    Hypercube networks have received much attention from both parallel processing and communications areas over the years since they offer a rich interconnection structure with high bandwidth, logarithmic diameter, and high degree of fault tolerance. They are easily partitionable and exhibit a high degree of fault tolerance. Fault-tolerance in hypercube and hypercube-based networks received the attention of several researchers in recent years; The primary idea of this study is to address and analyze the reliability issues in hypercube networks. It is well known that the hypercube can be augmented with one dimension to replace any of the existing dimensions should any dimension fail. In this research, it is shown that it is possible to add i dimensions to the standard hypercube, Qn to tolerate (i - 1) dimension failures, where 0 \u3c i ≤ n. An augmented hypercube, Qn +(n) with n additional dimensions is introduced and compared with two other hypercube networks with the same amount of redundancy. Reliability analysis for the three hypercube networks is done using the combinatorial and Markov modeling. The MTTF values are calculated and compared for all three networks. Comparison between similar size hypercube networks show that the augmented hypercube is more robust than the standard hypercube; As a related problem, we also look at the subcube embeddability. Subcube embeddability of the hypercube can be enhanced by introducing an additional dimension. A set of new dimensions, characterized by the Hamming distance between the pairs of nodes it connects, is introduced using a measure defined as the magnitude of a dimension. An enumeration of subcubes of various sizes is presented for a dimension parameterized by its magnitude. It is shown that the maximum number of subcubes for a Qn can only be attained when the magnitude of dimension is n - 1 or n. It is further shown that the latter two dimensions can optimally increase the number of subcubes among all possible choices

    Edge-Fault Tolerance of Hypercube-like Networks

    Full text link
    This paper considers a kind of generalized measure λs(h)\lambda_s^{(h)} of fault tolerance in a hypercube-like graph GnG_n which contain several well-known interconnection networks such as hypercubes, varietal hypercubes, twisted cubes, crossed cubes and M\"obius cubes, and proves λs(h)(Gn)=2h(n−h)\lambda_s^{(h)}(G_n)= 2^h(n-h) for any hh with 0⩽h⩽n−10\leqslant h\leqslant n-1 by the induction on nn and a new technique. This result shows that at least 2h(n−h)2^h(n-h) edges of GnG_n have to be removed to get a disconnected graph that contains no vertices of degree less than hh. Compared with previous results, this result enhances fault-tolerant ability of the above-mentioned networks theoretically

    Fault tolerant architectures for integrated aircraft electronics systems, task 2

    Get PDF
    The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported
    • …
    corecore