6 research outputs found

    Microgrid Control Strategy Study and Controller Design Based on Model Predictive Control

    Get PDF
    In the 21st century, because of the exhausting of oil, coal and other non-renewable energy, human beings enter a period of large-scale exploitation and utilization of renewable energy. Renewable energy generation become an important way for new energy utilization, however, as more and more distributed generation connect to power distribution network, the traditional distribution network structure will be changed. A large number of distributed generation applications of modern power electronic technology, have also produced a lot of harmonics to impact the power quality. It will threaten the safe operation of the distribution network and obstruct the utilization of renewable energy. The concept of microgrid provides a new thinking for the application of renewable energy. Microgrid can make full use of the characteristics of the renewable energy and it is the key of the future resources and environment for human beings. We can predict that, microgrid construction will be rapidly developed in 21st century, based on the utilization of renewable energy. In order to coordinate the contradiction between power grid and distributed generation, the concept of microgrid arises at the historic moment. Microgrid has two operation modes: islanded mode and grid-connected mode. By theoretically analyzing, simulation model construction and result analyzing, the microgrid coordinated control strategies will be studied in this paper. Firstly, this paper starts from the microgrid operation control mode, respectively establishing the traditional control strategy of simulation for the isolated and connected microgrid. The isolated grid control strategies is V/f control strategy based on droop characteristic and the connected grid control strategies is P/Q control strategy. Second, the model predictive control is introduced in chapter three including its principle and application. In the case study, the traditional PI controller is compared with model predictive control controller in single distributed generation system to introduce advantages of model predictive control method. Last, the model of microgrid with multiple distributed generations is built in MATLAB/Simulink. There are three cases in this model: working model switches between grid-connected and islanded mode; increase and decrease load in islanded mode; disconnect one PV system at certain time in islanded mode. By analyzing results of three cases, the MPC controller can achieve desirable efficiency of power control. Meanwhile, the voltage and frequency are working in the required range of the system. That proves the effectiveness of MPC controller

    Synchrophasor Sensing and Processing Based Smart Grid Security Assessment for Renewable Energy Integration

    Get PDF
    With the evolution of energy and power systems, the emerging Smart Grid (SG) is mainly featured by distributed renewable energy generations, demand-response control and huge amount of heterogeneous data sources. Widely distributed synchrophasor sensors, such as phasor measurement units (PMUs) and fault disturbance recorders (FDRs), can record multi-modal signals, for power system situational awareness and renewable energy integration. An effective and economical approach is proposed for wide-area security assessment. This approach is based on wavelet analysis for detecting and locating the short-term and long-term faults in SG, using voltage signals collected by distributed synchrophasor sensors. A data-driven approach for fault detection, identification and location is proposed and studied. This approach is based on matching pursuit decomposition (MPD) using Gaussian atom dictionary, hidden Markov model (HMM) of real-time frequency and voltage variation features, and fault contour maps generated by machine learning algorithms in SG systems. In addition, considering the economic issues, the placement optimization of distributed synchrophasor sensors is studied to reduce the number of the sensors without affecting the accuracy and effectiveness of the proposed approach. Furthermore, because the natural hazards is a critical issue for power system security, this approach is studied under different types of faults caused by natural hazards. A fast steady-state approach is proposed for voltage security of power systems with a wind power plant connected. The impedance matrix can be calculated by the voltage and current information collected by the PMUs. Based on the impedance matrix, locations in SG can be identified, where cause the greatest impact on the voltage at the wind power plants point of interconnection. Furthermore, because this dynamic voltage security assessment method relies on time-domain simulations of faults at different locations, the proposed approach is feasible, convenient and effective. Conventionally, wind energy is highly location-dependent. Many desirable wind resources are located in rural areas without direct access to the transmission grid. By connecting MW-scale wind turbines or wind farms to the distributions system of SG, the cost of building long transmission facilities can be avoid and wind power supplied to consumers can be greatly increased. After the effective wide area monitoring (WAM) approach is built, an event-driven control strategy is proposed for renewable energy integration. This approach is based on support vector machine (SVM) predictor and multiple-input and multiple-output (MIMO) model predictive control (MPC) on linear time-invariant (LTI) and linear time-variant (LTV) systems. The voltage condition of the distribution system is predicted by the SVM classifier using synchrophasor measurement data. The controllers equipped with wind turbine generators are triggered by the prediction results. Both transmission level and distribution level are designed based on this proposed approach. Considering economic issues in the power system, a statistical scheduling approach to economic dispatch and energy reserves is proposed. The proposed approach focuses on minimizing the overall power operating cost with considerations of renewable energy uncertainty and power system security. The hybrid power system scheduling is formulated as a convex programming problem to minimize power operating cost, taking considerations of renewable energy generation, power generation-consumption balance and power system security. A genetic algorithm based approach is used for solving the minimization of the power operating cost. In addition, with technology development, it can be predicted that the renewable energy such as wind turbine generators and PV panels will be pervasively located in distribution systems. The distribution system is an unbalanced system, which contains single-phase, two-phase and three-phase loads, and distribution lines. The complex configuration brings a challenge to power flow calculation. A topology analysis based iterative approach is used to solve this problem. In this approach, a self-adaptive topology recognition method is used to analyze the distribution system, and the backward/forward sweep algorithm is used to generate the power flow results. Finally, for the numerical simulations, the IEEE 14-bus, 30-bus, 39-bus and 118-bus systems are studied for fault detection, identification and location. Both transmission level and distribution level models are employed with the proposed control strategy for voltage stability of renewable energy integration. The simulation results demonstrate the effectiveness of the proposed methods. The IEEE 24-bus reliability test system (IEEE-RTS), which is commonly used for evaluating the price stability and reliability of power system, is used as the test bench for verifying and evaluating system performance of the proposed scheduling approach

    Deep Reinforcement Learning for the Optimization of Building Energy Control and Management

    Get PDF
    Most of the current game-theoretic demand-side management methods focus primarily on the scheduling of home appliances, and the related numerical experiments are analyzed under various scenarios to achieve the corresponding Nash-equilibrium (NE) and optimal results. However, not much work is conducted for academic or commercial buildings. The methods for optimizing academic-buildings are distinct from the optimal methods for home appliances. In my study, we address a novel methodology to control the operation of heating, ventilation, and air conditioning system (HVAC). We assume that each building in our campus is equipped with smart meter and communication system which is envisioned in the future smart grid. For academic and commercial buildings, HVAC systems consume considerable electrical energy and impact the personnels in the buildings which is interpreted as monetary value in this article. Therefore, we define social cost as the combination of energy expense and cost of human working productivity reduction. We implement game theory and formulate a controlling and scheduling game for HVAC system, where the players are the building managers and their strategies are the indoor temperature settings for the corresponding building. We use the University of Denver campus power system as the demonstration smart grid and it is assumed that the utility company can adopt the real-time pricing mechanism, which is demonstrated in this paper, to reflect the energy usage and power system condition in real time. For general scenarios, the global optimal results in terms of minimizing social costs can be reached at the Nash equilibrium of the formulated objective function. The proposed distributed HVAC controlling system requires each manager set the indoor temperature to the best response strategy to optimize their overall management. The building managers will be willing to participate in the proposed game to save energy cost while maintaining the indoor in comfortable zone. With the development of Artificial Intelligence and computer technologies, reinforcement learning (RL) can be implemented in multiple realistic scenarios and help people to solve thousands of real-world problems. Reinforcement Learning, which is considered as the art of future AI, builds the bridge between agents and environments through Markov Decision Chain or Neural Network and has seldom been used in power system. The art of RL is that once the simulator for a specific environment is built, the algorithm can keep learning from the environment. Therefore, RL is capable of dealing with constantly changing simulator inputs such as power demand, the condition of power system and outdoor temperature, etc. Compared with the existing distribution power system planning mechanisms and the related game theoretical methodologies, our proposed algorithm can plan and optimize the hourly energy usage, and have the ability to corporate with even shorter time window if needed. The combination of deep neural network and reinforcement learning rockets up the research of deep reinforcement learning, and this manuscript contributes to the research of power energy management by developing and implementing the deep reinforcement learning to control the HVAC systems in distribution power system. Simulation results prove that the proposed methodology can set the indoor temperature with respect to real-time pricing and the number of inside occupants, maintain indoor comfort, reduce individual building energy cost and the overall campus electricity charges. Compared with the traditional game theoretical methodology, the RL based gaming methodology can achieve the optiaml resutls much more quicker
    corecore