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Abstract

With the evolution of energy and power systems, the emerging Smart Grid (SG)

is mainly featured by distributed renewable energy generations, demand-response

control and huge amount of heterogeneous data sources. Widely distributed syn-

chrophasor sensors, such as phasor measurement units (PMUs) and fault distur-

bance recorders (FDRs), can record multi-modal signals, for power system situa-

tional awareness and renewable energy integration.

An effective and economical approach is proposed for wide-area security assess-

ment. This approach is based on wavelet analysis for detecting and locating the

short-term and long-term faults in SG, using voltage signals collected by distributed

synchrophasor sensors.

A data-driven approach for fault detection, identification and location is pro-

posed and studied. This approach is based on matching pursuit decomposition

(MPD) using Gaussian atom dictionary, hidden Markov model (HMM) of real-time

frequency and voltage variation features, and fault contour maps generated by ma-

chine learning algorithms in SG systems. In addition, considering the economic

issues, the placement optimization of distributed synchrophasor sensors is studied

to reduce the number of the sensors without affecting the accuracy and effectiveness

of the proposed approach. Furthermore, because the natural hazards is a critical
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issue for power system security, this approach is studied under different types of

faults caused by natural hazards.

A fast steady-state approach is proposed for voltage security of power systems

with a wind power plant connected. The impedance matrix can be calculated by the

voltage and current information collected by the PMUs. Based on the impedance

matrix, locations in SG can be identified, where cause the greatest impact on the

voltage at the wind power plants point of interconnection. Furthermore, because

this dynamic voltage security assessment method relies on time-domain simulations

of faults at different locations, the proposed approach is feasible, convenient and

effective.

Conventionally, wind energy is highly location-dependent. Many desirable wind

resources are located in rural areas without direct access to the transmission grid.

By connecting MW-scale wind turbines or wind farms to the distributions system

of SG, the cost of building long transmission facilities can be avoid and wind power

supplied to consumers can be greatly increased. After the effective wide area mon-

itoring (WAM) approach is built, an event-driven control strategy is proposed for

renewable energy integration. This approach is based on support vector machine

(SVM) predictor and multiple-input and multiple-output (MIMO) model predictive

control (MPC) on linear time-invariant (LTI) and linear time-variant (LTV) sys-

tems. The voltage condition of the distribution system is predicted by the SVM

classifier using synchrophasor measurement data. The controllers equipped with

wind turbine generators are triggered by the prediction results. Both transmission

level and distribution level are designed based on this proposed approach.

Considering economic issues in the power system, a statistical scheduling ap-

proach to economic dispatch and energy reserves is proposed. The proposed ap-

proach focuses on minimizing the overall power operating cost with considerations

of renewable energy uncertainty and power system security. The hybrid power
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system scheduling is formulated as a convex programming problem to minimize

power operating cost, taking considerations of renewable energy generation, power

generation-consumption balance and power system security. A genetic algorithm

based approach is used for solving the minimization of the power operating cost.

In addition, with technology development, it can be predicted that the renewable

energy such as wind turbine generators and PV panels will be pervasively located

in distribution systems. The distribution system is an unbalanced system, which

contains single-phase, two-phase and three-phase loads, and distribution lines. The

complex configuration brings a challenge to power flow calculation. A topology

analysis based iterative approach is used to solve this problem. In this approach,

a self-adaptive topology recognition method is used to analyze the distribution sys-

tem, and the backward/forward sweep algorithm is used to generate the power flow

results.

Finally, for the numerical simulations, the IEEE 14-bus, 30-bus, 39-bus and

118-bus systems are studied for fault detection, identification and location. Both

transmission level and distribution level models are employed with the proposed

control strategy for voltage stability of renewable energy integration. The simulation

results demonstrate the effectiveness of the proposed methods. The IEEE 24-bus

reliability test system (IEEE-RTS), which is commonly used for evaluating the price

stability and reliability of power system, is used as the test bench for verifying and

evaluating system performance of the proposed scheduling approach.
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Chapter 1

Introduction

1.1 Motivation and background

In the last decades, the increasing demand of energy world wide requires to rapid

development of modern power systems and renewable energy. The future intelligent

power system faces new challenges in dealing with extremely large data sets, often

called big data, and using them to improve power system wide area monitoring

(WAM), stability margin prediction, fault detection, identification, location, power

system control and decision making [68, 59, 110].

Smart sensors are being widely embedded in the modern power system as devices

such as phasor measurement unit (PMU) and fault disturbance recorder (FDR)

[43, 121, 40]. Compared to the traditional slow-response supervisory control and

data acquisition (SCADA) system, the PMUs and FDRs can generate measure-

ments with a high data rate to help better analyze wide area events. Furthermore,

wide-area monitoring data can be utilized to implement new approaches for better

situational awareness and help operators determine the best response to an event,

or allow system to act autonomously in cases where human response time would be

exceedingly slow.
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In addition to the data directly from the power system, other very large data

sets are also widely used in power system operation, such as weather data, data

from the National Lightning Detection Network (NLDN), Geographic Information

System (GIS) data, and electricity market data [68, 39, 110]. For example, the

weather data and GIS data are increasingly significant in light of variable renewable

sources such as wind farms and solar farms. The electricity market data is also

important to facilitate applications such as distributed demand response, integration

of distributed renewable energy resources (DERs), and electric vehicles.

After sensor data collection, the network architecture and the communication

medium in the modern power system is used to fulfill the diverse requirements for the

event information exchange and event-driven control. For example, the protection

information and commands exchanged between the intelligent electronic devices in

a distribution grid will require a lower network latency than the SCADA informa-

tion messages exchanged between electrical sensors and control centers. Moreover,

the information exchanged can be event-driven such as for protection and control

purposes, or periodic such as for real-time monitoring.

The optimal scheduling of economic dispatch and energy reserves in a hybrid

power system becomes a new challenge in renewable energy integration (REI) re-

cently. The scheduling objective is minimizing the power operating cost in a hybrid

power system with high renewable energy penetration. A credible scheduling eco-

nomic dispatch and energy reserves is able to increase the efficiency of the power

production and ensure the reliability of the power system operations. The popu-

lation around world is predicted to double by 2050 [59], and the energy demand

would be certainly keep growing. As what has happened, the energy demand rised

and the prices of some energy resources increased over last two or three decades.

To enhance the energy demand rising and avoid environment pollution increasing

simultaneously, one solution is to use much more renewable energy from wind , solar
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and others. In [121], the wind power capacity is expected to increase to 48, 000 MW

by 2020 which is threefold to the amount in 2004.

With technology development, distributed wind turbine generators and PV pan-

els are widely located in distribution power systems. Different from transmission

system, the distribution system is an unbalanced three-phase system, which contains

single-phase, two-phase and three-phase loads, and distribution lines, which results

in that the power flow calculation of distribution systems is different from that of

transmission systems.

1.2 Contribution

The objective of this dissertation is to propose a novel power system security

approach for renewable energy integration based on synchrophasor measurement

units, such as PMUs and FDRs. First, with the widespread PMUs and FDRs, the

power system security monitoring is studied as the beginning. Second, based on

the monitoring results, the control strategy with the renewable energy integration

is investigated to improve the performance of the hybrid power system. Finally,

considering the stochastic characteristic of the renewable energy and the robustness

of the hybrid power system, a credible scheduling economic dispatch method is

studied and proposed in this paper. In detail, the contribution of this paper is listed

as following:

1. A power system fault detection and fault location method is proposed based

on wavelet analysis and unsupervised learning algorithm.

(a) Based on the wavelet analysis, the fault signal features can be extracted

and further processed by the clustering algorithm.

(b) With the fault contour map, the fault can be located in a short time.
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2. Based on the method above, a fault detection, identification and location

method is proposed.

(a) Compared to the wavelet analysis, the MPD is more robust and higher

efficient.

(b) The HMM provides a high accuracy for fault detection and identification

rate under different fault scenarios.

(c) A hybrid clustering algorithm is proposed to provide an efficient and

effective way to generate the fault contour map.

3. Considering the impact of the wind power plant, a fast steady-state voltage

stability security assessment is proposed.

(a) With the impedance matrix, the voltage security of the hybrid system

can be evaluated.

(b) The impact of the wind power plant can be calculated.

4. After system monitoring, a novel auxiliary coordinated-control method is in-

vestigated in high wind power penetration scenarios.

(a) A MIMO coordinated-control strategy is proposed for both LTI and LTV

power systems.

(b) The method is investigated in different types of wind turbine generators

located in both transmission and distribution systems.

(c) The proposed control strategy can be easily adapted to cooperate with

exiting voltage control methods.

5. Based on the dynamic programming and stochastic control strategy, a eco-

nomic dispatch method is studied in this paper.
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(a) Both Weibull distribution and Gaussian distribution are studied for the

wind speed model.

(b) The chance constrain is developed from a probability format into a fea-

sible convex format in order to solve the nonlinear stochastic problem.

6. Considering the renewable energy in distribution system, a power flow problem

in distribution system is researched.

(a) Both depth-first search and breadth-first search is used to analyze the

topology information of a distribution system

(b) Based on the topology analysis, the backward/forward sweep algorithm

is used to calculate the power flow.

1.3 Dissertation outline

In Chapter 1, the literature of current research are studied, which provides the

motivation, rationale and background for the paper. In Chapter 2, WAM is care-

fully studied in different SGs including fault detection, identification and location.

Considering the economic issue, the optimization placement of the distributed syn-

chrophasor sensors is studied to reduce the number of the sensors. In addition,

considering the wind power peneration is increasing, a fast voltage security assess-

ment approach is investigated for a wind power plant. In Chapter 3, an even-driven

control strategy is proposed for renewable energy integration, which contains both

transmission level and distribution level. The economic dispatch strategy for the hy-

brid power system is also presented, and a distribution system power flow problem

is researched. In Chapter 4, in the numerical simulation part, the IEEE 14, 30, 39,

118 system are studied for fault detection, identification and location. Both trans-

mission level and distribution level model are built for renewable energy integration.

The simulation results demonstrate the effectiveness of the proposed methods.
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Chapter 2

Literature review

The Smart Grid (SG) is regarded as the new generation of power grid, for its im-

proved energy efficiency, profiled demand, maximized utility, reduced cost and con-

trolled emission. The SG uses two independent flows of electricity and information

to create a widely distributed automated energy delivery network [43, 77, 94, 141].

2.1 Current research on wide area monitoring

A frequency disturbance recorder (FDR) is a real-time data acquisition device

attached in SG, which is less expensive and easier to install than PMU. The FDR

can provide synchronized measurements of multi-dimensional information such as

voltage, phase angle and frequency, all of which are essential for wide-area monitor-

ing (WAM) applications. With such capability of distributed FDRs, once a fault

takes place, the resulting multi-modal signals can be recorded to help diagnose the

fault type and locate the topological position, which is critical for shortening the

response time and improving the reliability of the SG system in avoiding cascading

outages [18, 67, 95, 137].

A fault detection and identification mechanism is necessary for secure SG op-

erations. With regard to fault detection, a system line outage detection method
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is designed in [120] based on phasor angle measurements and system topology in-

formation. Furthermore, in [119], this method is developed for double line outage

detection. A power network adaption of the worst configuration heuristics is de-

veloped combined with linear programming algorithm in [31] to predict power grid

weak points. For fault identification, in [23], four feature selection methods, hypoth-

esis test, stepwise regression, stepwise selection by Akaike’s information criterion,

and LASSO/ALASSO are compared to identify their applicabilities. In [24], a fault

detection and identification method is proposed based on Petri net, which is de-

signed to capture the modelling details of the protection system of the distribution

network. A discrimination method on transient voltage stability and voltage sag

is proposed in [113]. In this method, the matching pursuit decomposition (MPD)

with sinusoid dictionary is used for feature extraction and the learning vector quan-

tization (LVQ) network is used for discriminating different types of voltage signals.

In [123], a framework is described for utilizing FDR measurements for steady-state

stability analysis and computation of system stability limits.

Once a fault in SG is detected and identified, the next step is to locate its

geographic position and estimate its region of influence. In [52, 53], a fault location

method is proposed based on Gaussian Markov random field (GMRF) using the

phasor angle measurements across the buses in SG. In [45, 99], a wavelet-based

method is designed for fault detection and location. Using the maximum wavelet

coefficients (WCs) of the frequency and voltage signals under fault disturbance, the

relationship between the WCs and power variation is investigated, which is shown to

improve the accuracy of load and fault location estimation. In [83], through forced

low-frequency oscillation, a fault location method is proposed based on the signals

collected from FDRs, which are attached on the ultra-high and high-voltage buses.

This method takes the advantage of FDR measurements to reduce the searching

area for locating disturbance sources. In [114], certain types of incipient failures are
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detected from substation waveforms by intelligent distribution fault anticipation

(DFA) algorithms with the discussion on related data requirements and processing

analysis.

In power systems, fault detection, identification and location usually need to be

solved as a unified problem. However, most methods discussed in previous literature

focus on only one or two aspects and cannot solve the three problems simultane-

ously. It can be foreseen that a multi-functional approach, which can achieve fault

detection, identification and location, will have a wide range of applications in SG

systems. In the last few decades, research in machine learning [72, 2, 96, 134, 133]

has advanced data-driven approaches to detect and diagnose faults in power sys-

tems. However, in real-world applications, there are many factors that affect and

deteriorate measured signals from FDRs, which requires the fault detection, classi-

fication and location approaches to be highly effective and robust. Economic issues

also need to be considered, as equipment, installation and maintenance costs are

some of the major concerns in power systems. Therefore, it is imperative to study

a multi-functional method, which is flexible, robust, effective and economic to meet

the future power system requirements [18, 43, 101].

In addition, although the machine learning based fault analysis approaches are

accurate and comprehensive, a relative simple approach is proposed in this paper

as a supplement, which is focusing on voltage stability assessment for the power

systems with wind power plants. Voltage stability assessment methods in power

systems can be classified into two categories: dynamic simulation and steady-state.

A dynamic simulation is a method in which a high-accuracy dynamic test bench

is built to determine the fault impact. To generate an accurate analysis of voltage

stability, the dynamic test bench includes excitation systems, capacitors, high-order

generator models, relay protections, and so on. In [32], the dynamic simulation

provides a more accurate result than that of the V-Q power flow simulation. In [15],
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dynamic wind turbine models are built to study the voltage stability of the power

system with a large amount of wind power. Although the dynamic approach is

accurate, this method relies on time-domain simulations of faults at different lo-

cations. Ref. [93] illustrates that steady-state analysis provides another effective

way to analyze voltage stability. In [51], a steady-state method is used to assess

voltage security by using decision tree. In [124], by using times-series power flow,

a steady-state method is used to analyze voltage stability of power system with

high penetrations of wind. By using artificial intelligence in [61], a steady-state

method is used to analyze voltage stability of power system. Assuming the involved

dynamics are very slow, a steady-state method is designed for the voltage collapse

analysis [13, 11, 12].

2.2 Current research on renewable energy integration

The voltage control of a power system with high penetration of renewable re-

sources becomes a major concern recently [43]. The objective of voltage control

in power systems is monitoring the voltage and keeping voltage stability margin

within an acceptable range in the presence of various disturbances [116]. With the

development and large deployment of synchrophasor measuring device (also known

as phasor measurement unit - PMU), a real time data acquisition can be achieved

in synchronized time frame over hundreds of buses consisting of multi-dimensional

information (i.e. voltage magnitude, phase angle and frequency) [111, 58]. Using

the synchrophasor measurements, the wide-area monitoring system (WAMS) based

transient voltage stability prediction and control strategy with renewable energy is

proposed in this paper.

There are two major classic methods to determine the transient stability status

of a power system, one is the time-domain simulation of the system nonlinear differ-

ential equations and the other is the Lyapunov stability or energy function principle
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based transient-energy-function (TEF) method [4, 102]. However, the first one re-

quires accurate information of the network configuration and the second requires

the levels of kinetic energy and potential energy, which are not easy to determine

[73, 102].

Recently, machine learning and data mining based methods are attracting more

attention. Examples of these methods include artificial neural network (ANN), de-

cision tree (DT), and support vector machine (SVM). These methods provide a new

promising way to analyze power system stability [134, 133]. The perturbation in the

power system network can cause power imbalance between generation and load, and

it can affect generator angles and generator speed in the power system. Meanwhile,

the post-fault voltage can also be used to decipher the perturbations. Reference

[47] illustrates method to predict the outcome of system stability by observing and

analyzing a short-term post-fault period. In this paper, an support vector machine

(SVM) based modelling method is developed to predict stability of a power system

with high penetration renewable source.

The use of traditional proportional-integral derivative (PID) control strategy

has limitations for multiple-input and multiple-output (MIMO) or nonlinear control

systems with constraints. The PID based control solution decomposes a complex

system into single-input single-output loops such as cascaded systems, or linearizes

the system around an operating point in a very small range [5, 7].

On the other hand, the model predictive control (MPC) action at the current

time step is obtained by solving a finite horizon open-loop optimal control problem in

real-time, using the current state of the system as the initial state. The optimization

with respect to control variables yields an optimal control variable sequence and the

first control variable in this sequence is applied to the control system [105]. The

MPC has several advantages including robust control, easy inclusion of nonlinear

systems with constraints and MIMO systems controls [76, 71]. However, due to the
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high computational complexity and complicated control mechanism, this scheme is

not a widely used in power system control. Therefore, it is imperative to study a

multi-functional method, which is flexible, robust, effective and economic to meet

renewable energy integration requirements [18, 43, 126].

As renewable energy penetration keeps increasing in recent decades, the wind

plant playing a more important role in modern power system configuration [39, 110,

108, 129]. The economic scheduling in hybrid power systems becomes an emerging

challenge and urgent requirement on the road map of renewable energy integra-

tion [80, 130, 122, 127].

In [101], a method is focusing on how to determine the amount of spinning

reserve with large wind power penetration. And this method is based on [127] which

does not evaluate the impacts of wind generation uncertainty, and concentrates on

conventional energy generator outage and load prediction errors. An method of

managing stochastic renewable energy generation uncertainty is considered in [112],

and the approach generates schedules for a 24-hour period with hourly resolution.

In [139], a stochastic optimal power scheduling of generators and reserves with

large wind generation is studied on the WSCC-179 buses testing model [9, 112, 90].

A probabilistic method is formulated in [48] to optimize the spinning reserve on

different level of loads. This problem is caused by the generator outages or the

load forecast errors. In [100], a novel approach is used to determine the optimal

reserve with wind penetration in a power system. The mixed-integer linear program

is an indispensable issue, which is formulated for the unit commitment problem in

[25], which aids to reduce the computational complexity. These can be also found

in [130, 109]. The technique focuses on researching the conventional generation

outages and load forecasting errors of the system, which shows a larger spinning

reserve is not necessarily required if the wind penetration increasing during the

operating process.
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Chapter 3

Wide area monitoring with

synchrophasor measurement

systems

In power systems, fault detection, identification and location usually need to be

solved as a unified problem. However, most methods discussed in previous literature

focus on only one or two aspects and cannot solve the three problems simultane-

ously. It can be foreseen that a multi-functional approach, which can achieve fault

detection, identification and location, will have a wide range of applications in SG

systems. In the last few decades, research in machine learning [72, 2, 97, 8] has

advanced data-driven approaches to detect and diagnose faults in power systems.

However, in real-world applications, there are many factors that affect and dete-

riorate measured signals from FDRs, which requires the fault detection, classification

and location approaches to be highly effective and robust.

Economic issues also need to be considered, as equipment, installation and main-

tenance costs are some of the major concerns in power systems. Therefore, it is

imperative to study a multi-functional method, which is flexible, robust, effective
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and economic to meet the future power system requirements [18, 43, 127, 10]. In

this chapter, two data-driven computational approaches are proposed to analysis

the fault in SGs for WAM. The first is fault location approach based on wavelet

analysis. Based on the first approach an advance method is proposed to detect,

identify and locate power system faults, which utilizes voltage and frequency signals

measured by FDRs. The frequency signals are used to detect and identify different

types of fault, and the voltage signals are used to locate the fault in SG.

3.1 Problem formulation of wide area monitoring

The scheme of the IEEE New England 39-bus System is illustrated in Fig. 3.1,

which contains 10 generators, 36 transmission lines, 12 transformers and 19 loads.

The mathematical notations that describe this power system for our fault analysis

method are given as follows. ml is used to denote the fault type of the lth fault

occurrence, where l = 1, 2, 3, ..., L with L being the total number of fault occurrences,

ml = 1 represents generator ground fault, ml = 2 represents transmission line

outage, ml = 3 represents generator outage and ml = 4 represents load loss. And

other type of faults can also be represent with different value of ml. If ml = 0,

the SG is in a normal condition. If there is a fault occurring in the system, the

SG is in an abnormal condition; otherwise, it is in a normal condition. The set

of the 39 buses for the lth fault occurrence with type ml is denoted as S(ml)
l ={

S
(ml)
1,l ,S

(ml)
2,l ,S

(ml)
3,l , · · · ,S(ml)

39,l

}
, and S

(ml)
i,l is a set defined as S

(ml)
i,l = {F(ml)

i,l ,V
(ml)
i,l },

where i = 1, 2, 3, ..., 39 is the bus index, F
(ml)
i,l =

[
f
(ml)
i,l [1] · · · f (ml)

i,l [k] · · · f (ml)
i,l [K]

]T
represents the discrete time domain frequency measurement vector resulting from

the fault type ml with k as the time index, and T as the matrix transpose. Similarly,

V
(ml)
i,l =

[
v
(ml)
i,l [1] · · · v

(ml)
i,l [k] · · · v

(ml)
i,l [K]

]T
represents the voltage signal vector

in discrete time domain. This is a example of problem formulation for IEEE New

England 39-bus System. Based on this, the other power system model such as the
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Figure 3.1: The scheme of the IEEE New England 39-bus system.

IEEE 14-bus, 30-bus, 39-bus, 108-bus system can be similarly worked out.

3.2 Wavelet based fault analysis and fault location ap-

proach

3.2.1 Architecture of the wavelet based fault analysis

In this section, c
(ml)
i,l denotes the feature wavelet transformed coefficients ex-

tracted from the wavelet analysis of V
(ml)
i,l . The whole data processing flowchart is

in Fig. 3.2. After the input real-time voltage signal V
(ml)
i,l are collected, the signals

are processed by the wavelet-based multi-resolution analysis and the WCT feature
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Synchrophasor-based Data 
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Clustering

Fault Contour Map

End

Figure 3.2: The proposed wavelet-based and fault location method.

set C
(ml,nl)
l are extracted. Then the extracted features are clustered using k-means

algorithm to map each feature vector into different subsets for fault location. With

the geophysical map of the SG, the fault contour map could be determined and the

fault can be localized.

3.2.2 Wavelet analysis of voltage signals

Compared with the Fourier transform that only focuses in frequency domain,

wavelet based multi-resolution analysis is able to provide flexible time, frequency

and scale domain analysis, especially for edge detection and positioning in time

domain [79, 87]. Through the cascading filter bank filters in wavelet analysis, the

original signal is divided into several orthogonal subspaces. In the meanwhile, the

noise in the original signal is suppressed and the features of the original signal can
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be extracted and analyzed in certain subspaces. To achieve our goal of signal edge

detection and positioning for fault localization, we choose the symlets wavelets as

they can 1) accurately locate signal edges when long-term or short-term faults take

place, 2) reduce the data volume with its high decomposition level, 3) suppress noise

in the original signal, and 4) be suitable for implementation as they are approximate

linear filters [79, 87].

0.2s 0.4s 0.6s 0.8s 1.0s 1.2s 1.4s 1.6s 1.8s 2.0s
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Figure 3.3: Voltage signals for the short term transmission line fault

The results of symlets wavelet analysis for a long-term and a short-term fault are

demonstrated in Fig. 3.3, Fig. 3.4, Fig. 3.5, and Fig. 3.6. The voltage signal vector

v
(ml,nl)
i,l is obtained with a sampling rate of 1 kHz which is a common sampling rate

for PMUs in realistic system, and the simulation duration is 2 s. We assume that

the fault is a transmission line short fault at bus 15, thus i = 15. The short term

fault starts on 0.5 s and lasts 10 cycles (about 0.167 s). The long-term fault starts

on 0.5 s and lasts to the end of the simulation.

Fig. 3.3 demonstrates the voltage signal variation when the fault takes place, and

Fig. 3.4 demonstrates its wavelet analysis results. In Fig. 3.4, variable di denotes

the symlets wavelet coefficients obtained from the band-pass filter at scale level i,
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Figure 3.4: Symlets wavelet analysis results for the short-term fault

where i = {1, 2, 3, 4}. As we can see, the maximum WTCs in d3 and d4 indicate the

starting or ending of the fault occurrence. At the same time, the maximum WCTs

in d4 is negative, which indicates that the voltage fluctuation is downward at the

start. And the maximum WCTs in d3 is positive, which indicates that the voltage

fluctuation is upward at the end.
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Figure 3.5: Voltage signals for long-term transmission line fault
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Similarly, for long term faulty analysis, the maximum WTCs in Fig. 3.6 in d3

and d4 also indicate the fault occurrence in time domain. And the maximum WCTs

is negative, which also indicates that the voltage fluctuation is downward at this

time. In addition, the data volume in d4 is only 1/16 of the voltage data samples,

which compresses the data and release the storage and transmission pressure of the

system. As a result, we use the maximum WTCs in d4 the feature WTCs for further

processing for fault localization.

d4

d3

d2

d1

0.2s 0.4s 0.6s 0.8s 1.0s 1.2s 1.4s 1.6s 1.8s 2.0s

Figure 3.6: Symlets wavelet analysis results for the long-term fault

3.2.3 Noise suppression of wavelet-based fault analysis

In Fig. 3.8, the two maximum WCTs at decomposition level 5 can indicate the

fault starting and ending in time domain. And between the two maximum WTCs,

the other coefficient are decreasing first and then increasing, which indicate the

voltage is decreasing first and then increasing.

For the permanent fault, its symlets wavelet analysis in Fig. 3.10 is not as clear

as the transient fault. At decomposition level 5, there are two coefficients between

0.44 s and 0.6 s with almost the same amplitude, which cannot indicate the fault
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Figure 3.7: Voltage signals with noise of a transient transmission line outage
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Figure 3.8: Symlets wavelet analysis results for Fig. 3.7

starting clear in the time domain. In sum, in the scenario SNR = 5 dB, the symlets

wavelet analysis performance better in transient fault, this because the waveform of

the symlets wavelet is more similar to the transient fault, and has higher recognition

ability to the transient fault.

In Fig. 3.12, it is clear that the two maximum WTCs between 0.4 s and 0.6 s at

decomposition level 5 indicate the starting and ending of the transient fault in time

domain. And in Fig. 3.14, the maximum WTCs at decomposition level 5 indicates
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Figure 3.9: Voltage signals with noise of a permanent transmission line outage
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Figure 3.10: Symlets wavelet analysis results for Fig. 3.9

the starting of the permanent fault clearly. This also implies that for the scenario

with SNR larger than 10 dB, the symlets wavelet analysis can localize the transient

and permanent fault clearly in time domain.

In sum, with the SNR increasing, the symlets wavelet analysis performances

better in fault feature extraction and timing localization for both permanent fault

and transient fault. But as the experiments, for different fault scenarios, such as the

transient fault last for 1 second, the parameters of the wavelet need to be re-selected
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Figure 3.11: Voltage signals with noise of the transient transmission line outage

Figure 3.12: Symlets wavelet analysis results for Fig. 3.11

to get the best performance of the fault feature extraction.

3.2.4 Numerical result of transformer fault

A transformer disabling fault at Transformer 12 is simulated in the system.

The feature WTCs are clustered into 5 subset as in Table 3.1. The fault can be

successfully located using the fault contour map as in Fig. 3.15. The blue circle

which is near the boundary of the system corresponds to the subset 5, and represents
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Figure 3.13: Voltage signals with noise of the permanent transmission line outage
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Figure 3.14: Symlets wavelet analysis results for Fig. 3.13

the lowest impact level. In this subset, the buses are either directly connected to the

generators or near them, as a result, these buses have the smallest fluctuations in the

system as the generators can compensate the voltage fluctuation in power systems.

The yellow, orange and pink circles represent the subsets 4, 3 and 2, respectively.

The voltage fluctuation gradually increases in these bus subsets. The subset 1 is

denoted with a red ellipse with the largest feature WTC value. The red ellipse

illustrates that the fault is located in this area. Also, the pink circle indicates the
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Table 3.1: Impact level of transformer fault
Level Bus number

1st (nearest to fault) 13,12

2nd 4,11,14,15

3rd 3,5,6,7,8,9,10,16,17,18,21,24,27

4th 1,2,23,25,26,28,29

5th 19,20,22,30,31,32,33,34,35,36, 37,38,39

area where the electronic equipments would be damaged if the fault exist for a long

time.

3.3 Data-driven fault diagnosis approach

This is a multifunctional approach including fault detection, identification and

location.
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Figure 3.15: The proposed wavelet-based and Fault Location Method.
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The first step of fault detection and identification is frequency signal feature

extraction, which is achieved by the MPD with Gaussian atom dictionary that

provides an effective way to decompose the frequency signals and extract the feature

vectors corresponding to certain physical meanings [27, 88]. After a number of MPD

iterations, the frequency signals are decomposed into a combination of weighted

Gaussian atoms with a small amount of energy in the residual signals. After the

MPD feature extraction, a hybrid clustering algorithm is designed to cluster the

feature vectors into several subsets, and thus map the feature vectors into different

symbols. Then the signal feature transitional properties are modelled with hidden

Markov models (HMMs) using the obtained symbols under various normal and faulty

operation scenarios. Finally, the HMMs are used to detect and identify the fault.

3.3.1 Architecture of the advanced fault diagnosis approach

In this paper, frequency signals are chosen for fault detection and identification

because they are deemed to be closely related to power balance variations [45]. In

SG, any disturbance that leads to a large or sudden mismatch of active power causes

a frequency variation [41]. For example, if a generator is lost or if there is a significant

increase in load, the local frequency will drop immediately. In [45, 22, 41, 14],

various methods are proposed for fault detection and identification using frequency

signal, which proves that frequency signals are effective in analyzing power system

faults. On the other hand, the voltage and current variations caused by fault can

indicate the fault position. In [92, 46], fault location methods are proposed using

the measured voltage and current signals. In [115, 19], the fault location methods

for transmission lines are proposed using measured voltage signals. Based on the

success of fault detection, identification and location methods in previous literature,

in this paper, the frequency signals are chosen to detect and identify the fault, and

voltage signals are chosen to locate the fault in SG, with encouraging results.
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Figure 3.16: The data processing flowchart of the proposed fault analysis method.

The architecture of the proposed approach is illustrated in Fig. 3.16, where

the real-time frequency signal and voltage signal are collected by the FDRs in SG.

The frequency signal processing channel is used to detect and identify different

types of fault. The frequency signal F
(ml)
i,l is processed by the MPD algorithm

with Gaussian dictionary for generating frequency feature vector Φ
(ml)
i,l . Φ

(ml)
i,l =[

Φ
(ml)
i,l,1 Φ

(ml)
i,l,2 Φ

(ml)
i,l,3 · · · Φ

(ml)
i,l,P

]T
denotes the feature vector extracted from F

(ml)
i,l by

the MPD algorithm where P is the iteration number of the MPD algorithm in Block
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1 of Fig. 3.16. Through the hybrid clustering algorithm (Block 3), the frequency

features are mapped into symbols, which are used for modelling and training the

HMMs for detecting and identifying the faults in the system. In Block 5, two

HMMs Λ0 and Λϕ are trained and then used for normal and abnormal operating

conditions, respectively. Specifically, in the Block 7, the HMM identification block,

different HMMs
{
Λ(m),m = 1, 2, 3, 4} are trained and then used to identify different

types of fault.

Similarly, in the voltage signal processing channel, the MPD is used for extracting

voltage signal Θ
(ml)
i,l . Through the hybrid clustering algorithm, the voltage features

are clustered into different subsets for fault location. As shown in Fig. 3.16, the

arrows from Block 6 to Block 7 and Block 8 represent the control signals. If there

is a fault detected by Block 5 and 6, the HMM fault identification (Block 7) and

fault localization (Block 8) will be enabled to identify and then locate the fault in

SG. Otherwise, the two blocks are not enabled for reducing computational load.

3.3.2 Matching pursuit decomposition for feature extraction

A time-frequency analysis algorithm, MPD, is used to extract data features from

frequency and voltage signals. Compared with many time-frequency representations

such as Wigner distribution which may result in cross-terms causing information

distraction when processed incorrectly, the MPD feature extraction algorithm with

Gaussian atom dictionary can decompose the original signal into Gaussian atoms

and generate minimum residual signal energy [88]. Compared with the MPD with

sinusoid dictionary [113] and MPD with Gabor dictionary [57], the MPD with Gaus-

sian atom dictionary provides more information in each extracted feature vector

which includes the amplitude coefficient, time-shift, frequency-shift and variance

of the Gaussian atom. This approach has the potential to generate a more dense

time-frequency representation.
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The MPD algorithm is summarized as following. We denote a continuous signal

f(t) which can be decomposed as a weighted summation of the Gaussian signal

atoms as

f(t) =

∞∑
p=1

αp gp(t) , (3.3.1)

where αp ∈ A is the coefficient for the Gaussian atom gp(t) which is selected from a

given Gaussian atom dictionary, p is the index of Gaussian atoms and its coefficient.

The convergence of this representation is defined as [88]

lim
N→∞

||f(t)−
N−1∑
p=1

αp gp(t)||2 = 0 , (3.3.2)

and the energy of f(t) is related to (3.3.1) as

Ef =

∫ ∞

−∞
f(t)f∗(t)dt =

∞∑
p=1

|αp|2 , (3.3.3)

where f∗(t) is the complex conjugate of f(t), and since every Gaussian atom is

normalized, the energy of the signal equals to the sum of the squared coefficient

modules. Furthermore, although the orthogonality is not required for the Gaussian

atom dictionary D, the completeness is required for the MPD. The original signal

f(t) can be represented using decomposition with in finite iterations and a reminder

rN (t) with small energy residual as

f(t) =
N−1∑
p=1

αp gp(t) + rN (t) . (3.3.4)

With the notations in (3.3.4), the MPD algorithm is described as follows. Let

r1(t) = f(t), and search the atoms gp(t) in the Gaussian atom dictionary D for

the one which has the maximum magnitude of the projection in rp(t), where p =
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1, 2, 3 · · ·P . Specifically gp(t) is obtained and e = {τ, ν, σ} are the time-shifting,

frequency-shifting and related normalization coefficient for the Gaussian atoms.

gp(t) = arg max
g(e)(t)∈D

∣∣ ∫ ∞

−∞
rp(t) g

(e)(t)dt
∣∣ , (3.3.5)

After gp(t) is obtained, the corresponding coefficient αp is calculated as

αp(t) =

∫ ∞

−∞
rp(t) gp(t)dt . (3.3.6)

The relationship between the reminder rp(t) and rp+1(t) iteration MPD is

rp+1(t) = rp(t)− αp gp(t) (3.3.7)

where theNth reminder afterN−1 iteration is given by rN (t) = r1(t)−
∑N−1

p=1 αp gp(t).

The series ||r1(t)||2, ||r2(t)||2, · · · ||rN (t)||2 is a monotonically decreasing series and

infinitely approaching zero.

The Gaussian atoms we utilize are given by

g(e)(t) = ρ−1e−Kx(t−τy)2 cos(2πνzt) (3.3.8)

where ρ is the normalization coefficient given by

ρ = (π/Kx)
1/2e−((2πνz)2/4Kx) cos(2πνzτy) (3.3.9)

where Kx is the variance scale with x = 1, 2, 3, · · · , Xe and Xe being the largest

index, τy is the time-shifting with y = 1, 2, 3, · · · , Ye and Ye being the largest index,

νz is the frequency-shifting with z = 1, 2, 3, · · · , Ze and Ze is the largest index,

and σ = (Kx)
−1/2. The variance scale, time-shift and frequency-shift constitute the

three-dimensional grid of Gaussian dictionary and the algorithm flow is shown in
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Fig. 3.18. In detail, since the coefficient ρ is the normalization coefficient for the

Gaussian atoms, so the

ρ = (

∫ ∞

−∞
exp(−Kx(t− τy)

2)cos(2πνzt)dt)
−1. (3.3.10)

Here, it is assumed that

k = 2πνz. (3.3.11)

And it is defined that

I(k) =

∫ ∞

−∞
exp(−Kx(t− τy)

2)cos(kt)dt. (3.3.12)

It is supposed t− τy = θ, then t = θ + τy.

It can be derived that

I(k) =

∫ ∞

−∞
exp(−Kx(θ)

2)cos(k(θ + τy))dθ (3.3.13)

=

∫ ∞

−∞
exp(−Kx(θ)

2)cos(kθ)cos(kτy))dθ

−
∫ ∞

−∞
exp(−Kx(θ)

2)sin(kθ)sin(kτy))dθ

Because the formula can be derived as

∫ ∞

−∞
exp(−Kx(θ)

2)cos(kθ)dθ = (π/Kx)
1/2exp(−k2/4Kx). (3.3.14)

In addition, after the FDR signals are collected, the MPD is used to analyze

these signals and extract features.

∫ ∞

−∞
exp(−Kx(θ)

2)sin(kθ)dθ = (π/Kl)
1/2exp(−k2/4Kx) (3.3.15)

29



Feature vector Φ
(ml)
i,l =

[
Φ
(ml)
i,l,1 Φ

(ml)
i,l,2 Φ

(ml)
i,l,3 · · · Φ

(ml)
i,l,P

]T
is generated by apply-

ing MPD on the frequency signal F
(ml)
i,l . The pth element Φ

(ml)
i,l,p is defined as Φ

(ml)
i,l,p =

[α
(ml)
i,l,p τ

(ml)
i,l,p ν

(ml)
i,l,p σ

(ml)
i,l,p ]

T , representing the amplitude, time-shifting, frequency-shifting

and variance of the Gaussian atom selected by the MPD. Therefore

∫ ∞

−∞
exp(−Kx(t− τy)

2)cos(2πνzt)dt = (3.3.16)

(π/Kx)
1/2e−((2πνz)2/4Kx)[cos(2πνzτy)− sin(2πνzτy)]

Similarly, Θ
(ml)
i,l =

[
Θ

(ml)
i,l,1 Θ

(ml)
i,l,2 Θ

(ml)
i,l,3 · · · Θ

(ml)
i,l,P

]T
denotes the voltage signal

feature vector extracted from V
(ml)
i,l by the MPD algorithm.
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Figure 3.17: Residual energy fraction vs. MPD iterations

As shown in Fig. 3.17, the residual energy is below 30% after 10 iterations for

both signals, original signal and noise-distributed signal. After 60 iterations, the

residual energy is below 10% for the both signals. In sum, as shown in Fig. 3.16, in

the frequency signal processing channel, the transitional properties of the frequency
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signal features are used to detect and identify different faults. So the MPD in Block

1 for frequency signal feature extraction should extract more detailed information

from the original signals.

In our experiments, the iteration number for the frequency signal MPD is set to

30. In the voltage signal processing channel, the Gaussian atom with the maximum

coefficient amplitude is defined as the feature Gaussian atom. Meanwhile, the am-

plitude of the feature Gaussian atom in the voltage signal MPD result is used to

represent the impact of the power system fault on the corresponding bus where the

voltage signal is collected. And the MPD algorithm is a type of greedy algorithm,

the amplitude of the feature Gaussian atom can be computed in the first several

iterations [88]. So in this paper, the iteration of the MPD in Block 2 is set to 10 to

save the computation load.

Ground fault of load bus

The MPD results corresponding to ground fault of load bus are demonstrated

as following. The simulation duration is 500 ms; the ground fault of load bus fault

takes place at 200 ms for 10 cycles, about 166.7 ms, at bus 4. The FDR is located

at bus 15 with a sampling rate of 1 kHz [137, 141]. In this simulation scenario, it is

observed that the frequency keeps unchanged at the beginning, then the frequency

fluctuation starts at 230 ms. As the fault location and the FDR location are in

different areas, the frequency fluctuation experiences a trough first and then crest

to balance the power flow in the system. In order to investigate the feature extraction

performance, a white noise is added to the FDR readings, resulting in 5 dB SNR.

As shown in Fig. 3.19 and 3.20, the synthesized signal tracks the original signal very

well and it can be observed that the original signal curve and synthesized signal

curve are almost identical. For the case of noisy signals, although there are a lot

of small burrs and spikes in the signal, the synthesized signal is consistent with the
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Figure 3.18: The MPD algorithm processing flow.

original signal.

The time-frequency representation (TFRs) of the two signals are shown in Fig. 3.21

and 3.22. From Fig. 3.21, it is noticed that the original signal can be decomposed

using a number of Gaussian atoms. The signal in time duration from 200 ms to

300 ms is decomposed by Gaussian atoms with large coefficient amplitude, which

indicates a high fluctuation. In Fig. 3.22, in addition to the Gaussian atoms with

large coefficient amplitude, a number of atoms with small coefficient amplitude are

used to decompose the noisy signal.
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Figure 3.19: The frequency signal without noise and synthesized signal
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Figure 3.20: The frequency signal with SNR = 5 dB and synthesized signal

Generator disconnection

The figures below demonstrate the MPD results corresponding to a generator

disconnection with generator 3 disconnected on bus 32 and the PMU for data acqui-

sition on bus 10. From Fig. 3.23 we notice that there is a significant negative impact

of the frequency signal from 200 ms to 230 ms due to a generator disconnection caus-
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Figure 3.21: The MPD-TFR of 3.19
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Figure 3.22: The MPD-TFR of 3.20

ing active power lose and resulting in frequency decrease. As other generators in the

grid will compensate the active power lose automatically, the frequency fluctuation

only lasts 167 ms, and then there is a positive frequency fluctuation from 380 ms to

400 ms. The MPD feature extraction results indicate that the synthesis signal can

recover the original signal very well for both noise-free and noisy signal conditions
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as in Fig. 3.23 and 3.24. According to the TFR shown in Fig. 3.25, the original

signal is decomposed into a few number of Gaussian atoms.
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Figure 3.23: The noise-free frequency signal and synthesized signal
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Figure 3.24: The noisy frequency signal with SNR = 5 dB and synthesized signal

Although in Fig. 3.26, the noise-free signal is blurred by the noise, the two major

Gaussian atoms, which are the major features of the signal near 200 ms and 400

ms, are extracted similarly to the noisy case. This also illustrates the MPD is able
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to extract the features in both noise-free and noisy signals. This method can also

be used in different power systems.
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Figure 3.25: The MPD-TFR of 3.23
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Figure 3.26: The MPD-TFR of 3.24

Load disconnection

We also conduct the experiment of load disconnection. The load disconnection

happens on bus 24 and the PMU for data acquisition is also located on bus 24.
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There are a positive and then a negative fluctuation in Fig. 3.27 and 3.28 due to

the load disconnection which causes the active power to increase in a short time and

then the system will balance it automatically.

0ms 100ms 200ms 300ms 400ms 500ms
59.6Hz

59.7Hz

59.8Hz

59.9Hz

60.0Hz

60.1Hz

60.2Hz

60.3Hz

Figure 3.27: The noise-free frequency signal and synthesized signal
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Figure 3.28: The noisy frequency signal with SNR = 5 dB and synthesized signal

The MPD-TFR in Fig. 3.29 illustrates the major Gaussian atoms for decom-

posing noise-free signal. Although in Fig. 3.30, the signals are blurred by noise,
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the major Gaussian atoms chosen by MPD below 200 Hz are almost the same as

Fig.3.29. The different colors from red to dark indicates the different amplitude

of the Gaussian atoms and also indicates the different components of the original

signal.

This provides an effective way to analyze the frequency signals in different fault

scenarios.
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Figure 3.29: The MPD-TFR of 3.27
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Figure 3.30: The MPD-TFR of 3.28
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Generator grounding

We assume a generator grounding fault takes place on bus 35 for generator 6.

And the data acquisition PMU is located on bus 22. From Fig. 3.31 and 3.32, we

notice that there is a negative impact on the frequency, which is due to the active

power loss after the generator grounding.
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Figure 3.31: The noise-free frequency signal and synthesized signal
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Figure 3.32: The noisy frequency signal with SNR = 5 dB and synthesized signal
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In Fig. 3.33 and 3.34, the major Gaussian atoms in both MPD-TFRs, which

are below 200 Hz near 200 ms, are almost identical. This indicates that the data

features of the generator ground fault are extracted by the MPD for both noise-free

and noisy conditions.

100ms 200ms 300ms 400ms 500ms

1kHz

800Hz

600Hz

400Hz

200Hz

0

0

Figure 3.33: The MPD-TFR of 3.31
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Figure 3.34: The MPD-TFR of 3.32
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3.3.3 Hybrid clustering algorithm design

After the feature vectors are extracted from the FDR signals, the frequency

signal feature vectors Φ
(ml)
i,l,p = [α

(ml)
i,l,p τ

(ml)
i,l,p ν

(ml)
i,l,p σ

(ml)
i,l,p ]

T in the set Φ
(ml)
i,l are clustered

into different subsets, and the voltage signals Θ
(ml)
i,l are also going to be clustered

in a similar way. Combining the k-means clustering algorithm with the k-nearest

neighbour (k-NN) algorithm, a novel hybrid algorithm is proposed for clustering the

feature vectors with reduced computational load.

k-NN and k-means clustering algorithms

The k-NN algorithm can be summarized as following. First, a data set is given,

which is pre-clustered into a number of groups. With a new-coming data point ξp,

k data points in the data set are selected, which are the nearest neighbors to the

new-coming data point ξp. The group which contains the most of these neighbors

is the one that the new-coming data point ξp belongs to [35, 85].

For example, when a new-coming data point ξ18 is generate from the signals

collected on Bus 18. ξ18 need to be classified among the 5 impact level groups

{Ω1, Ω2, · · · Ω5}. If k-NN algorithm is used, k nearest neighbors of ξ18 will be

selected from the 5 groups. And the new-coming data point ξ18 will be assigned to

into the group, which contains the most of the nearest neighbors.

k-means is an algorithm which uses an iterative refinement technique. Firstly, an

initial set of k means {η1, η2, η3, · · · , ηk} of k corresponding clusters is given. Then,

each observation in the observation set {ξp, p = 1, 2, 3, · · · , N} is assigned to the

cluster which yields the least distance between its mean to the observation among

all clusters as following.

Ω
(t)
i = {ξp : d(ξp, η(t)i ) ≤ d(ξp, η

(t)
j ) ∀j, 1 ≤ j ≤ k} (3.3.17)
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where t is the iteration number, p = 1, 2, 3, ..., N , N is the size of the observation

data set and d(·) represents the distance function. The new means of each cluster is

updated as in (7) and the data set is re-clustered until the means converge[86, 85].

η
(t+1)
i =

1

|Ω(t)
i |

∑
ξj∈Ω

(t)
i

ξj (3.3.18)

For example, when a new-coming data set {ξ1, ξ2, ξ3, · · · , ξN} is generated from

the SG and need to be classified into 5 groups, an initial set of 5 means is generated.

Then, as in (6), the set is clustered with k-means algorithm iteratively until the

means converge.

Compared with the k-NN algorithm, the k-means algorithm calculates the mean

value ηi for different clustering hypotheses at every iteration. As a result, the

computational complexity of the k-NN algorithm, O(k×N ×d), is much lower with

respect to that of the k-means algorithm, O(N × k× I × d), where N is the number

of observations; k is the number of clusters; I is the number of iterations; and d is

the dimensions of the observation [37, 85, 86].

The hybrid clustering algorithm

In this section, our proposed hybrid clustering algorithm is explained based on

the k-NN algorithm and k-means algorithm. The Euclidean distance d(·) is used

for the algorithm.

The proposed hybrid clustering algorithm is expected to provide reduced compu-

tational complexity and aims to enable real-time data processing for signal feature

clustering. In the frequency signal processing channel, the hybrid clustering is used

to cluster the frequency features and map them into a symbol set. In the voltage

signal processing channel, the hybrid clustering is used to cluster the coefficient

amplitudes of the feature Gaussian atoms. The two clustering blocks in Fig. 3.16
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work independently with a similar processing architecture, which is illustrated in

Fig. 3.35. The proposed hybrid clustering algorithm is explained as following using

the frequency signal feature clustering as an example. After the FDR signals are

processed by the MPD, the feature vector set
{
Φ
(ml)
i,l,p

}
is generated and ready for

clustering.

KNN UnitDATA

k-Means Unit

Group 1

Group J

...

Group 3

Group 2

Switch

Figure 3.35: Architecture of the hybrid clustering algorithm.

As shown in Fig. 3.35, firstly, only part of the feature vector set
{
Φ
(ml)
i,l,p

}
is

fed to k-means algorithm. The k-means algorithm clusters the data set
{
Φ
(ml)
i,l,p

}
into several subsets

{
Ω

(ml)
g,l }, where g is the subset index. After the clusters are

generated, the data are clustered by the k-NN algorithm, which uses the generated

subsets
{
Ω

(ml)
g,l } for clustering the rest of the feature vectors in set

{
Φ
(ml)
i,l,p

}
. The

number of feature vectors that are used for generating
{
Ω

(ml)
g,l } depends on whether

the k-means can generate satisfactory clustering result. For example, in a training

process of our experiments, 1200 out of 8000 feature vectors are used for k-means

algorithm, and the rest of the data are clustered by k-NN, which saves a large

amount of computational loads. In addition, the hybrid clustering in the voltage

signal processing channel works similarly and clusters the coefficients of the feature
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Gaussian atoms into several groups for generating the fault contour maps. This

provides an effective way to reduce the computation load and increase the clustering

speed.

3.3.4 Hidden Markov models for fault detection and identification

The feature symbols
{
β
(ml)
i,l,p

}
are used as the observation symbol to train different

HMMs for detecting and identifying faults. As Fig. 3.16 illustrates, two HMMs, Λ0

and Λϕ are trained and used to detect faults and distinguish between the normal

condition and abnormal conditions of the SG. Also for each fault type, a HMM,

Λ(m), is trained to identify the mlth fault type after the fault occurs.

X3X2

X1

a11
a12

a21 a31 a13
a23
a32

a22 a33

Observation

Observation

Observation

Figure 3.36: Architecture of an HMM with 3 hidden states.

In Λ(m), the parameters λ(m)=
{
π(m), A(m), B(m)

}
represent the initial states

distribution vector, the hidden state transition matrix, and the state-dependent

observation density matrix, respectively [107, 106]. The example of a 3-states HMM

is in Fig. 3.36 where aij is the transition probability between state i to j. The HMM

44



Λ0 and Λϕ for the SG in normal and abnormal operating condition is trained with

the frequency signals.

Using the Baum-Welch algorithm [107, 27], the maximum-likelihood estimate

for λ is given by:

λML = arg max
λ

logP (β|λ,Λ) , (3.3.19)

where β is the observation data; λ is the parameter set of the HMM Λ. And at the

ith iteration:

λ(i+1) = argmax
λ

∑
H

P (H|β, λ,Λ) logP (H,β|λ(i),Λ) , (3.3.20)

where H is the hidden states and the sum is the overall possible state sequences in

the hidden Markov model.

The probability of P (β|λ,Λ) is calculated as

P (β|λ,Λ) =
∑
H

P (H,β|λ,Λ) (3.3.21)

=
∑
H

πH1

NAobs∏
n=1

aHn,Hn+1

NAobs∏
n=1

bHn(βn) ,

where πH1 is the initial state probability of state H1, aHn,Hn+1 is the state transition

probability from state Hn to Hn+1, and bHn(βn) is the probability from observation

βn to state bHn .

The application of the CHMMs is also investigated, which uses Gaussian mixture

models (GMM) with MG components to model the observation probability given by

a certain state[106, 107, 27], which is given by

bj(β) =

MG∑
k=1

pjkN (β;µjk, σjk) , 1 ≤ j ≤ Aobs, (3.3.22)
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where N (·) denotes the Gaussian distribution, pkj is the GMM coefficient with∑MG
k=1 pjk=1, pjk ≥ 0, µjk is the mean value of the kth component and σjk is the

corresponding covariance for the Gaussian components.

The HMM procedure in the scenario of a generator ground fault is investigated

in the IEEE 39-bus system. The training data set are generated with random fault

in generators 3, 4, 5, 6, 7, 9. Aobs is set to 32 and 3 hidden states are used to

calculate the parameters of the DHMM for generator ground fault.

π = {0.2899, 0.2808, 0.4293},

A =


0.7512 0.2483 5.8712× 10−4

0.7195 0.2788 0.0017

0.3151 0.3192 0.3657

 ,

where π is the initial probability distribution of the three hidden states; A = [aij ]

is the hidden state transfer matrix, while aij is the probability from hidden state

i to hidden state j. And B = [bij ] is a 3 × 32 matrix, where bij is the emission

probability from hidden state i to observation j [107].

We also investigate the application of the continuous HMMs, which uses Gaus-

sian mixture models (GMM) with MG components to model the observation prob-

ability given by a certain state[1, 107, 27], which is given by

bj(β) =

MG∑
k=1

pjkN (β;µjk,Σjk) , 1 ≤ j ≤ Aobs, (3.3.23)

where N (·) denotes the Gaussian distribution, pkj is the GMM coefficient with∑MG
k=1 pjk=1, pjk ≥ 0, µjk is the mean value of the kth component and Σjk is the

corresponding covariance for the Gaussian components.
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The continuous HMM training results are demonstrated as below, we useMG = 6

components for each observation pdf, and we treat the feature symbol as continuous

values. We calculate the mean and the covariance of the Gaussian components as

following,

µ =


19.567 12.000 17.461 30.855 23.000 22.000

1.2772 21.000 7.5131 5.2861 3.0751 14.000

24.513 11.000 13.000 15.310 9.8515 27.027

 ,

Σ =


0.2456 1.0000 0.2485 1.3349 1.0000 1.0000

0.2004 1.0000 0.2498 0.2042 0.0696 1.0000

0.2498 1.0000 1.0000 0.2140 0.1265 0.5963

 ,

where µij , the (i, j)th element of µ denotes the mean value of the jth Gaussian

component of the ith state for the generator grounding fault, and Σij denotes the

corresponding covariance. Following a similar procedure, for different abnormally

scenarios, different HMMs are trained.

Base on the HMM method, the fault detection and identification is carried out

as follows. First, we model the normal operation HMMs Λ0 for SG in normal

conditions. Also we build different HMMs corresponding to the different kinds of

faults: ml = 1 for generator grounding, ml = 2 for load grounding, ml = 3 for

generator disconnection , and ml = 4 for load disconnection.

After all the HMMs are built, they are used to detect and classify faults. First

the HMM Λ0 will be used to determine if the SG is operating normally. If a fault

is detected, the fault contour map will be generated. Four different HMMs, Λ(ml),

ml = 1, 2, 3, 4 are used to identify the fault type. We use the confusion matrices to

demonstrate the performance of the algorithm in the next section.

47



3.3.5 Fault contour map for fault location

In addition to fault detection and identification, as shown in Fig. 3.16, the fault

location can also be inferred from power system signals. In the voltage signal pro-

cessing channel, the coefficient amplitude of the feature Gaussian atom in the MPD

results is used to represent the impact of the power system fault on the correspond-

ing bus where the signal is recorded. The 39 buses are classified into several different

impact levels by the clustering algorithm. Combined with the topology information

of the SG, the fault contour map can be generated and the fault can be located.

The fault location approach is demonstrated as following using the same example

of ground fault of load bus as before. In the voltage signal processing channel, the

clustering algorithm is used to cluster the coefficients of feature Gaussian atoms

and the corresponding 39 buses into 5 different impact levels as shown in Table 3.2.

Combined with the topology information of the IEEE 39 bus system, it is noticed

that bus 4 has the greatest amplitude of the feature Gaussian atom. In Table 3.2,

bus 4 belongs to the 1st level, which also illustrates the probable location of the

fault. Level 2 to 5 indicate different impact levels, which also implies electrical

distance. The impact on bus 12 is small in level 5, because there is a transformer

linking the high voltage buses 11, 13 and the low voltage bus 12. Combined with

the topology information of the smart grid with Table 3.2, the fault contour map

can be generated as in Fig. 3.37, which can be used to locate the fault and indicate

different impact areas of the fault. For another example, if there is a transmission

line outage at 15% distance between bus 4 and bus 14, this method can locate the

fault between these two buses and indicate that the outage is near bus 4 for it has

the greatest amplitude of the feature Gaussian atom.
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Table 3.2: Impact level of ground fault of load bus
Impact level Bus number

1st (nearest to fault) 4

2nd 3,5,6,7,11,13,14,15,18

3rd 2,8,9,10,16,17,21,24,26,27

4th 1,19,22,23,25,28

5th 12,20,29,30,31,32,33,34,35,36,37,38,39

3.4 Wide area monitoring with optimal synchrophasor

sensor placement

Early work on the optimal PMU placement (OPP) problem was investigated

based on generalized integer linear programming (ILP) formulation [50]. Contin-

gency conditions of line outage or PMU loss are considered with OPP in [3]. In this

paper, aiming to provide the full network observability, an optimal synchrophasor

sensor placement (OSSP) approach is investigated to determine the minimal number

and optimal location of synchrophasor sensors.

3.4.1 Optimal synchrophasor sensor placement

The objectives of OSSP are to minimize the number of synchrophasor sensors,

while to maximize the measurement redundancy for ensuring full system observ-

ability. In this section, the concept of topological observability is adopted and the

following rules are applied [58] for OSSP.

• If the voltage phasor and current phasor at one end of a branch are known,

the voltage phasor at other end of that branch can be obtained using Ohm’s

law.

• If the voltage phasors at both ends of a branch are known, the current phasor

through this branch can be calculated.
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Figure 3.37: The fault contour map for ground load at bus 4.

The measurements such as bus voltage phasors and branch current phasors, directly

obtained from the synchrophasor sensors, are referred to as direct measurements.

Measurements derived by employing the above two rules are referred to as indirect

measurements, or pseudo measurements. In an observable network, each and every

bus must be observed at least once by using direct or indirect measurement.

The OSSP placement at a bus can be seen as a binary decision variable defined

as

ui =

 1 if synchrophasor sensor is placed at bus i

0 otherwise
(3.4.1)
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For a system with n buses, the optimal sensor placement problem can be formulated

as an integer linear programming problem as follows,

minF =

n∑
i=1

ciui

subject to constraints: fi =
∑n

j=1 ai,juj ≥ 1, i = 1, 2, 3, ..., n, where ci is the cost

of installing a synchrophasor sensor at bus i. The cost of synchrophasor sensor

installation at each bus is assumed to be equal to 1 per unit in the present study.

fi refers to the number of times that the ith bus is observed through synchrophasor

measurements. ai,j is the (i, j)th entry of system connectivity matrix defined as

ai,j =

 1 if i = j or if i and j are connected

0 otherwise
(3.4.2)

OSSP considering the effect of zero-injection buses

If the effect of ZIBs is considered, the total number of synchrophasor sensors in

OSSP problem will be futher reduced due to the following rules

• In a zero injection cluster (ZIC), if the zero-injection bus is observable and its

adjacent buses are all observable except one, then the unobservable bus will be

identified as observable by applying Kirchhoff’s Current Law (KCL) at ZIB.

• In a ZIC, if all the buses are observable except the zero-injection one, then the

zero-injection bus can be also identified as observable by using nodal equations.

Combining these two cases can lead to the conclusion that a ZIC is observable

when it has at most one unobservable bus.
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OSSP considering single sensor outage

Outage of a sensor at bus h, can be considered into the previous OSSP by setting

the corresponding decision variable uh to zero. To facilitate the formulation of the

optimization problem, a parameter, pi,j is defined as follows:

pi,j =

 0 if h=j

1 otherwise
(3.4.3)

then, the associated constraints to OSSP problem considering single sensor outage

are as

fi =
n∑

j=1

pi,jai,juj ≥ 1, ∀i,∀h (3.4.4)

OSSP considering single line outage

Outage of a line may cause loss of observability for one of its terminal buses,

which would otherwise be observable using the current phasor of that line. For a

power network with M lines, M single line contingencies can be defined. Thus the

constraints of single line outage can be presented as:

fi =

n∑
j=1

ali,juj ≥ 1, ∀i, ∀l, (3.4.5)

where the parameter ali,j = 0 if the lth line connects buses i and j, and ali,j = ai,j

otherwise.

In summary, combining the aforementioned constraints corresponding to dif-

ferent scenarios, the OSSP problem can be formulated and solved for full spatial

characterization of synchrophasor measurements in a SG.
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3.4.2 Numerical result of IEEE 14-bus system

The IEEE 14-bus system is used as a test bench for investigating our proposed

OSSP problem. From the computed resulted of OSSP shown in Table 3.3, without

considering ZIB, only 4 sensors are required to observe the whole power system. If

considering ZIB, only 3 sensors are required. However, if considering single line out-

age and single sensor outage, 9 and 10 sensors are needed, respectively. Considering

both single line outage and single sensor outage, 11 sensors are needed. The effect

of ZIB is considered in the simulations in the scenarios of single line outage, single

sensor outage, and single sensor/line outage.1312 11 146 51
32
478 910

Figure 3.38: The IEEE 14 bus system.

Table 3.3: Comparison of OSSP results in IEEE 14-bus system
Scenario Type Number Location of Sensors Rate

Ignoring the effect of ZIB 4 1-2, 4, 6, 8, 10-11, 13-14 28.6

Considering the effect of ZIB 3 2, 6, 9 21.4

Single Line Outage 9 1-2, 4, 6, 8, 10-11, 13-14 64.3

Single Sensor Outage 10 1-2, 4-6, 9-11, 13-14 71.4

Single Sensor/Line Outage 11 1-2, 4-6, 8-11, 13-14 78.6

53



3.5 A fast voltage security assessment approach for a

wind power plant

With the increasing technology of wind turbines, the penetration level of wind

power is rising and wind power has become competitive with other types of genera-

tion. Because of the low penetration levels of wind power during the early decades,

the loss of a wind power plant was not considered a critical threat to power sys-

tem security. During these decades, when a fault caused the voltage deviation at

the interconnection bus of a wind power plant, the wind power plant was discon-

nected and reconnected when the fault was cleared and the voltage returned to

normal [98, 63, 62]. In the modern power systems, because the size of wind power

plant have increased (up to 1,000 MW), wind power is an indispensable resource in

generation, and the simple disconnection-reconnection approach cannot be adopted

for voltage deviation scenarios. Therefore, it is imperative to develop an effective

and efficient voltage assessment approach to enhance voltage security for wind power

plants.

3.5.1 Admittance matrix based voltage security assessment

As discussed above, a fast voltage security assessment approach is proposed in

this paper for power systems that have a wind power plant. The objective of voltage

security assessment is to identify system locations that will have the greatest impact

on the voltage at the wind power plant’s point of interconnection.

Considering that a three-phase symmetrical fault on a bus causes the highest

fault current, it is necessary to study it to better protect the wind power plant in

the system. Thus, this paper studies the three-phase symmetrical fault to illustrate

the proposed approach. It is assumed that the PMUs are located on all the buses in

the power system. Traditionally, the element [Yi,j ] in admittance matrix Y indicates
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the admittance between bus i and bus j [98]. In this paper, the impedance matrix

is calculated by the inverse of the admittance matrix Y; then the information on

the impact is generated, which indicates the changes in current injection at one bus

have on the others.

Because there is a wind power plant in the power system, this approach can

be used to generate for the critical bus set B, which has the greatest impact on

the voltage stability at the wind power plant’s point of interconnection. It’s also

provides an effective way to study the robustness and resilience of a power system

under a short-circuit current injection. The impedance equivalent matrix can be

expressed as

Z =



Z11 · · · Z1i · · · Z1n

· · · · · · · · · · · · · · ·

Zi1 · · · Zii · · · Zin

· · · · · · · · · · · · · · ·

Zn1 · · · Zni · · · Znn


,

It is assumed that the three-phase symmetrical fault occurs at bus i and the

wind power plant is connected at bus j. The short-circuit current at bus i can be

calculated as

ISCi = V 0
i /Zii, (3.5.1)

where:

V 0
i is the bus voltage pre-fault condition measured by PMUs

Zii is the Thevenin equivalent impedance of bus i

ISCi is the short-circuit current at bus i.
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Table 3.4: The impedance matrix of IEEE 14-bus system
Bus No. 1 2 3 4 5 6 7

1 -0.26 - 2.22i -0.27 - 2.26i -0.28 - 2.28i -0.28 - 2.29i -0.28 - 2.28i -0.29 - 2.45i -0.29 - 2.41i
2 -0.27 - 2.26i -0.27 - 2.25i -0.28 - 2.28i -0.28 - 2.29i -0.28 - 2.28i -0.29 - 2.45i -0.29 - 2.41i
3 -0.28 - 2.28i -0.28 - 2.28i -0.25 - 2.19i -0.28 - 2.29i -0.28 - 2.29i -0.29 - 2.45i -0.29 - 2.41i
4 -0.28 - 2.29i -0.28 - 2.29i -0.28 - 2.29i -0.28 - 2.27i -0.28 - 2.28i -0.29 - 2.44i -0.29 - 2.39i
5 -0.28 - 2.28i -0.28 - 2.28i -0.28 - 2.29i -0.28 - 2.28i -0.27 - 2.25i -0.28 - 2.42i -0.29 - 2.39i
6 -0.29 - 2.45i -0.29 - 2.45i -0.29 - 2.45i -0.29 - 2.44i -0.28 - 2.42i -0.28 - 2.43i -0.31 - 2.52i
7 -0.30 - 2.41i -0.30 - 2.41i -0.29 - 2.41i -0.29 - 2.39i -0.29 - 2.40i -0.31 - 2.52i -0.30 - 2.38i
8 -0.30 - 2.41i -0.30 - 2.41i -0.29 - 2.41i -0.29 - 2.39i -0.29 - 2.40i -0.31 - 2.52i -0.30 - 2.38i
9 -0.30 - 2.45i -0.30 - 2.45i -0.30 - 2.45i -0.29 - 2.43i -0.29 - 2.43i -0.32 - 2.53i -0.30 - 2.46i
10 -0.30 - 2.45i -0.30 - 2.45i -0.30 - 2.44i -0.29 - 2.43i -0.29 - 2.43i -0.31 - 2.51i -0.30 - 2.47i
11 -0.29 - 2.44i -0.29 - 2.44i -0.29 - 2.44i -0.29 - 2.43i -0.28 - 2.42i -0.29 - 2.47i -0.30 - 2.49i
12 -0.28 - 2.45i -0.28 - 2.45i -0.29 - 2.45i -0.28 - 2.44i -0.28 - 2.42i -0.27 - 2.44i -0.30 - 2.52i
13 -0.29 - 2.45i -0.29 - 2.45i -0.29 - 2.45i -0.28 - 2.44i -0.28 - 2.42i -0.28 - 2.44i -0.30 - 2.51i
14 -0.29 - 2.45i -0.29 - 2.45i -0.29 - 2.45i -0.29 - 2.43i -0.29 - 2.43i -0.30 - 2.49i -0.30 - 2.48i

Bus No. 8 9 10 11 12 13 14
1 -0.26 - 2.22i -0.27 - 2.26i -0.28 - 2.28i -0.28 - 2.29i -0.28 - 2.28i -0.29 - 2.45i -0.30 - 2.41i
2 -0.27 - 2.26i -0.27 - 2.25i -0.28 - 2.28i -0.28 - 2.29i -0.28 - 2.28i -0.29 - 2.45i -0.30 - 2.41i
3 -0.28 - 2.28i -0.28 - 2.28i -0.25 - 2.20i -0.28 - 2.29i -0.28 - 2.29i -0.29 - 2.45i -0.29 - 2.41i
4 -0.28 - 2.29i -0.28 - 2.29i -0.28 - 2.29i -0.28 - 2.27i -0.28 - 2.28i -0.29 - 2.44i -0.29 - 2.39i
5 -0.28 - 2.28i -0.28 - 2.28i -0.28 - 2.29i -0.28 - 2.28i -0.27 - 2.25i -0.28 - 2.42i -0.29 - 2.40i
6 -0.29 - 2.45i -0.29 - 2.45i -0.29 - 2.45i -0.29 - 2.44i -0.28 - 2.42i -0.28 - 2.43i -0.31 - 2.52i
7 -0.30 - 2.41i -0.30 - 2.41i -0.29 - 2.41i -0.29 - 2.40i -0.29 - 2.40i -0.31 - 2.52i -0.30 - 2.38i
8 -0.29 - 2.41i -0.30 - 2.41i -0.29 - 2.41i -0.29 - 2.39i -0.29 - 2.40i -0.31 - 2.52i -0.30 - 2.38i
9 -0.30 - 2.45i -0.30 - 2.45i -0.30 - 2.45i -0.29 - 2.43i -0.29 - 2.43i -0.32 - 2.53i -0.30 - 2.46i
10 -0.30 - 2.45i -0.30 - 2.45i -0.30 - 2.44i -0.29 - 2.43i -0.29 - 2.43i -0.31 - 2.51i -0.30 - 2.47i
11 -0.29 - 2.44i -0.29 - 2.44i -0.29 - 2.44i -0.29 - 2.43i -0.28 - 2.42i -0.29 - 2.47i -0.30 - 2.49i
12 -0.28 - 2.45i -0.28 - 2.45i -0.29 - 2.45i -0.28 - 2.44i -0.28 - 2.42i -0.27 - 2.44i -0.30 - 2.52i
13 -0.29 - 2.45i -0.29 - 2.45i -0.29 - 2.45i -0.28 - 2.44i -0.28 - 2.42i -0.28 - 2.44i -0.30 - 2.51i
14 -0.29 - 2.45i -0.29 - 2.45i -0.29 - 2.45i -0.29 - 2.43i -0.9 - 2.43i -0.30 - 2.49i -0.30 - 2.48i

Then the impact of the fault on bus j can be calculated as

∆Vj = ISCi Zij , (3.5.2)

where

∆Vj is the fault impact on bus j

Zij is the Thevenin equivalent impedance between bus i and j

Therefore, all the buses i = 1, 2, 3, · · · , n can be calculated, and the critical bus

set B can be determined according to the voltage impacts.

3.5.2 A study example of IEEE 14-bus system

The IEEE 14-bus system is illustrated in Fig. 3.38. The impedance matrix can

be calculated in Table 3.4. Considering the nature hazards, such as typhoon and

earthquake, the parameters and the topology of power systems will change. For this

IEEE 14-bus power system, it is assumed that the transmission lines between bus
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Table 3.5: The impedance matrix of IEEE 14-bus system with a fault
Bus No. 1 2 3 4 5 6 7

1 -0.18 - 2.12i -0.19 - 2.16i -0.20 - 2.18i -0.20 - 2.19i -0.20 - 2.18i -0.20 - 2.34i -0.22 - 2.31i
2 -0.20 - 2.16i -0.19 - 2.15i -0.19 - 2.18i -0.20 - 2.19i -0.20 - 2.18i -0.20 - 2.34i -0.22 - 2.31i
3 -0.19 - 2.18i -0.19 - 2.18i -0.17 - 2.10i -0.20 - 2.19i -0.20 - 2.19i -0.20 - 2.35i -0.22 - 2.30i
4 -0.20 - 2.19i -0.20 - 2.19i -0.20 - 2.19i -0.20 - 2.17i -0.20 - 2.18i -0.20 - 2.34i -0.21 - 2.29i
5 -0.20 - 2.18i -0.20 - 2.18i -0.20 - 2.18i -0.20 - 2.18i -0.19 - 2.15i -0.19 - 2.31i -0.21 - 2.30i
6 -0.20 - 2.34i -0.20 - 2.34i -0.20 - 2.35i -0.20 - 2.34i -0.19 - 2.31i -0.19 - 2.23i -0.22 - 2.47i
7 -0.22 - 2.31i -0.22 - 2.31i -0.22 - 2.30i -0.21 - 2.29i -0.21 - 2.30i -0.22 - 2.47i -0.23 - 2.25i
8 -0.22 - 2.31i -0.22 - 2.31i -0.22 - 2.30i -0.21 - 2.29i -0.21 - 2.30i -0.22 - 2.47i -0.23 - 2.25i
9 -0.22 - 2.35i -0.22 - 2.35i -0.22 - 2.34i -0.22 - 2.32i -0.22 - 2.33i -0.22 - 2.50i -0.23 - 2.31i
10 -0.22 - 2.35i -0.22 - 2.35i -0.22 - 2.34i -0.22 - 2.32i -0.22 - 2.33i -0.22 - 2.50i -0.23 - 2.31i
11 -0.20 - 2.34i -0.20 - 2.34i -0.20 - 2.35i -0.20 - 2.34i -0.19 - 2.31i -0.19 - 2.23i -0.22 - 2.47i
12 -0.20 - 2.34i -0.20 - 2.35i -0.20 - 2.35i -0.20 - 2.34i -0.19 - 2.32i -0.19 - 2.23i -0.21 - 2.47i
13 -0.20 - 2.34i -0.20 - 2.34i -0.20 - 2.35i -0.20 - 2.34i -0.19 - 2.31i -0.19 - 2.23i -0.22 - 2.47i
14 -0.22 - 2.35i -0.22 - 2.35i -0.22 - 2.34i -0.22 - 2.32i -0.22 - 2.33i -0.22 - 2.50i -0.23 - 2.31i

Bus No. 8 9 10 11 12 13 14
1 -0.22 - 2.31i -0.22 - 2.35i -0.22 - 2.35i -0.20 - 2.34i -0.20 - 2.34i -0.20 - 2.34i -0.22 - 2.35i
2 -0.22 - 2.31i -0.22 - 2.35i -0.22 - 2.35i -0.20 - 2.34i -0.20 - 2.35i -0.20 - 2.34i -0.22 - 2.35i
3 -0.22 - 2.31i -0.22 - 2.34i -0.22 - 2.34i -0.20 - 2.35i -0.20 - 2.35i -0.20 - 2.35i -0.22 - 2.34i
4 -0.21 - 2.29i -0.22 - 2.32i -0.22 - 2.32i -0.20 - 2.34i -0.20 - 2.34i -0.20 - 2.34i -0.22 - 2.32i
5 -0.21 - 2.30i -0.22 - 2.33i -0.22 - 2.33i -0.19 - 2.31i -0.19 - 2.32i -0.19 - 2.31i -0.22 - 2.33i
6 -0.22 - 2.47i -0.22 - 2.50i -0.22 - 2.50i -0.19 - 2.23i -0.19 - 2.23i -0.19 - 2.23i -0.22 - 2.50i
7 -0.23 - 2.25i -0.23 - 2.31i -0.23 - 2.31i -0.22 - 2.47i -0.21 - 2.47i -0.22 - 2.47i -0.23 - 2.31i
8 -0.23 - 2.07i -0.23 - 2.31i -0.23 - 2.31i -0.22 - 2.47i -0.21 - 2.47i -0.22 - 2.47i -0.23 - 2.31i
9 -0.23 - 2.31i -0.24 - 2.27i -0.24 - 2.27i -0.22 - 2.50i -0.22 - 2.51i -0.22 - 2.51i -0.24 - 2.27i
10 -0.23 - 2.31i -0.24 - 2.27i -0.20 - 2.19i -0.22 - 2.50i -0.22 - 2.51i -0.22 - 2.51i -0.24 - 2.27i
11 -0.22 - 2.47i -0.22 - 2.50i -0.22 - 2.50i -0.10 - 2.03i -0.19 - 2.23i -0.19 - 2.23i -0.22 - 2.50i
12 -0.21 - 2.47i -0.22 - 2.51i -0.22 - 2.51i -0.19 - 2.23i -0.10 - 2.09i -0.17 - 2.18i -0.22 - 2.51i
13 -0.22 - 2.47i -0.22 - 2.51i -0.22 - 2.51i -0.19 - 2.23i -0.17 - 2.18i -0.14 - 2.13i -0.22 - 2.51i
14 -0.23 - 2.31i -0.24 - 2.27i -0.24 - 2.27i -0.22 - 2.50i -0.22 - 2.51i -0.22 - 2.51i -0.11 - 2.00i

13 and 14, and bus 11 and 10 are outaged. The impedance matrix can be calculated

as shown in Table 3.5.

As illustrated before, it is assumed that a wind power plant is located as Bus

10. The voltage impact from large to small is {9, 7, 6, 11, 13, 4, 14, 5, 2, 12, 1, 3, 8}.

Because the IEEE 14-bus system is relatively small, if there is a three-phase sym-

metrical fault occurs at Bus 10, the whole power system will be impacted heavily.

This is the reason that the impedance elements in Table 3.4 and Table 3.5 are

greater than 2 p.u.. So considering the greatest voltage impact, the first 30% volt-

age deviation impact buses are chosen, and the critical bus set is determined as

{9, 7, 6, 11}. Considering the nature hazards, the transmission lines between Bus 13

and 14, and Bus 11 and 10 are outage. As above, the voltage impact from large to

small is {9, 7, 4, 5, 2, 1, 8, 3, 6, 14, 13, 12, 11}. The critical bus set can be determined

as {9, 7, 4, 5}.
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Chapter 4

Synchrophasor measurement

based renewable energy

integration

In this chapter, an auxiliary control strategy with low computational load is

proposed and studied for voltage stability enhancement. It is designed for both

distribution system and transmission system under high penetration renewable en-

ergy. The distribution system and transmission system are modeled as a nonlinear

MIMO dynamic system. This auxiliary controller will augment the existing control

variables within the two systems.

In order to reduce computational complexity, the proposed control strategy is

only triggered after the SVM controller predicts the voltage sag after disturbance

event. In [73], voltage stability are classified into large-disturbance and small-

disturbance voltage stability. Based on this, there are two different types of post-

fault scenarios considered in this paper. Type I post-fault scenarios are with the

condition that the equilibrium point is not changed. The linear time-invariant (LTI)

control strategy is proposed for the Type I post-fault scenarios. Type II post-fault
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scenarios are with the condition where there is a significant change in the equilib-

rium point of the system. For the Type II post-fault, the linear time-variant (LTV)

control strategy is utilized.

4.1 Formulation of the proposed fault analysis approach

4.1.1 Proposed approach for distribution system

As discussed in the before, an auxiliary coordinated control method focusing

on voltage stability is proposed. The flowchart shown in Fig. 4.1 illustrates the

strategies of the control system.

The voltage measured by PMUs at each bus, and wind speed measurements are

used as the input of the SVM predictor. The SVM predicts a large voltage sag after

a disturbance, which will be caused by two types of faults. Type I is the fault that

do not change the equilibrium point of the system operating on. An example of this

type of fault is wind speed fluctuation in a small range. Type II faults change the

equilibrium point. An example of this type of fault load switching. If the predicted

fault belongs to Type I, the LTI MPC is used.

On the other hand, if the fault belongs to Type II, the LTV MPC is used. In

this paper, the control objective is to maximize the system voltage stability margin.

The observed variables used by the MPC controller are the bus voltages on the

critical buses in the distribution system [70, 75].

Considering the characteristic of the variable nature of the renewable energy

generation, if the output power of wind turbine generators are not sufficient to

cover the loads, the voltage will deviation. The proposed control strategy will be

used to quickly stabilize the system voltage instantaneously.

A test system based on the IEEE 13-bus distribution system [6, 42] is shown in

Fig. 4.2. Two Type III wind turbine generators (WTGs) W1 and W2 are connected
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Figure 4.1: The data processing flowchart of the proposed method.

to bus 9 and 12, respectively. Both of them are doubly fed induction generators

rated at 1.0 MW each with nominal frequency of 60 Hz [34].

There is a switch gear Sw connected load 14 to bus 6. The controlled vectors

used for each WTG are pitch angle βW = [β1 β2]
T and excitation voltage EW =

[EW1 EW2 ]
T , where T is matrix transpose. Wind speed are monitored for each wind

turbine generator denoted as ν=[ν1 ν2]
T .

In addition to the WTGs, there is a traditional generator (TG), G1 at 10 MW,

60Hz, which is connected to bus 1 as the Thevenin equivalent motor. Vout =

[V6 V9 V12]
T are selected as the observation variables [70, 75, 28, 125]. The controller
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adjusts the multiple input variables to stabilize the voltage on bus 6, 9, 12. This

provides an efficient way to reduce the calculation burden and improve the feasibility.

G1
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<10>

<11>

<12>

<13>
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L8
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WTG2

Sw

L14

Infinite Bus

Figure 4.2: The test distribution system.

4.1.2 Proposed approach for transmission system

The flowchart is the same as Fig. 4.1. And the test system is shown in Fig. 4.3.

A WPP consisting of two type III wind turbine generators (WTGs) W1 and W2

and a voltage condenser are connected to bus 15 through a 15 km transmission

line. The WTG is a doubly fed induction generator rated at 1.5 MW each with

nominal frequency of 60 Hz [34]. The controlled vectors used for each WTG are

pitch angle βW = [β1 β2]
T and excitation voltage EW = [EW1 EW2 ]

T , where T

is matrix transpose. Wind speed are monitored for each wind turbine generator
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denoted as ν=[ν1 ν2]
T . In addition to the WPP, there are 2 TGs, G1 and G2; both

of them are 4.5 MW, 60Hz. The transmission lines between bus 17 to bus 14, bus

16 to bus 14 are 8 and 12 km, respectively. G3 is a 1.5 MW TG, connected through

a switch gear Sw to bus 14.

The penetration level of wind energy is above 20%. The controlled vectors of the

TGs are excitation voltage EG = [E1 E2]
T and mechanical power MG = [M1 M2]

T .

Vout = [V1 V6 V9 V12]
T are selected as the observation variables [70, 75, 28, 125].

The controller adjusts the multiple input variables to stabilize the voltage on bus 1,

6, 9, 12 during the transient.
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IEEE 13-bus Distribution Network

<1> <2> <3> <4> <5> <6>

<7>
<8> <9>

<10>

<11>

<12>

<13>

L1 L2 L3 L4 L5 L6

L8

L7

L9

L10

L11

L12

L13

W
T
G
1

W
T
G
2

Voltage 

Condenser

Wind Farm

<15>

G2

<16>

<17>

Figure 4.3: The test distribution system.

4.2 Voltage stability status prediction in distribution

system

4.2.1 Basic concept of support vector machine

The SVM is a supervised learning method used for classification, regression

and estimation problems. It is suitable to solve non-linear problems [21, 47]. The
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trajectory of the voltage stability status during transient is predicted using the

SVM based predictor. The decision function f(x), which is trained by historical

data, classifies the new data into different classes and minimizes the classification

error The basic SVM formulation is demonstrated as following, a set of training

data (x1, y1), ..., (xN , yN ) is given. xi ∈ RD are the input vectors and illustrated as

dots, yi are the corresponding class labels, where i = 1, 2, 3 · · ·N . A hyperplane is

built and separates the input vectors into two groups with the maximum margin of

separability. N is the number of observations, and D is the dimension of the input

vectors.

f(x) = sign

{
Nsv∑
j=1

αjy
sv
j

(
Φ(x)Φ(xsv

j )
)
+ b

}
(4.2.1)

where xsv
j are the support vectors, Φ(· ) is a non-linear vector function that maps the

input vector onto a higher dimensional feature space, ysvj is the label corresponding

to the jth support vector, N sv is the number of support vectors, b is a bias term,

and αj are the Lagrangian multiples obtained from solving the dual optimization

problem that minimizes the objective function defined in [21, 47].

min

{
1

2
∥w∥2 + C

N∑
i=1

ξi

}
(4.2.2)

subject to

ξi ≥ 0 ∀ i = 1, ..., N (4.2.3)

yi(w·xi + b) ≥ 1− ξi ∀ i = 1, ..., N (4.2.4)

This optimization is the process that trains the SVM by selecting the support

vectors from the training data set. The parameter C (C > 0) in the objective func-

tion given in (2) is a factor that controls the trade-off between the separation margin
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and training errors, ∥w∥ is the norm of a vector perpendicular to the separation hy-

perplane, and ξi are the slack variable which measure degree of misclassification. The

inner product Φ(x)·Φ(xsv
j ) is called the kernel function and denoted by K(x,xsv

j ).

The kernel function used in this paper is the radial basis function:

K(x,xsv
j ) = exp(−∥x− xsv

j ∥/2σ2) (4.2.5)

where σ is the width of the Gaussian. This was selected because it gave the most

satisfactory results when compared to the other alternative such as linear and poly-

nomial functions [47].

4.2.2 SVM designed for distribution system and transmission sys-

tem

In this approach, for the distribution system, the observation inputs used by the

SVM predictor includes the voltage of every bus V = [V1, V2, V3, ... V14]
T of the

system. Considering that wind speed varies with time, the wind speed ν=[ν1 ν2]
T

is also used as the input to the SVM. So the observation vector is defined as x =

[νT VT ]T .

Similarly, for the transmission system, the observation inputs used by the SVM

predictor includes the generator angle of the two TGs αG = [αG1 αG2]
T , the genera-

tor rotor speed ωG = [ωG1 ωG2]
T and the voltage of every bus V = [V1...V16]

T of the

system. Considering that wind speed varies with time, the wind speed ν=[ν1 ν2]
T

is also used as the input to the SVM. So the observation vector is defined as x =

[αT
G ωT

G νT VT ]T .

The numerical simulated on both systems separately. Both normal operations

and different types of disturbances are simulated for numerical experiments during

the training sessions. For the distribution and transmission line faults, single-line
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to ground, line-to-line, and line-to-line to ground as well as three-phase-to-ground

faults are simulated for all lines at different locations (at 5%, 10%, 25%, 50%, 60%

and 80% of the length). The fault durations as 5, 10, 15, 20, 30 and 60 cycles as

well as permanent faults with different starting times are simulated. Load increasing

and decreasing at 1%, 2%, 3%, 5%, 10%, 15%, 17.5%, 20% and loads switching are

simulated on the loads. The WTGs are simulated at different wind turbulence levels,

respectively.

Both the opening and closing of the switch are also simulated. According to

the rule presented in reference [47], the generated training data are labeled into

classes, one is the normal condition and labeled as “1”; the other is disturbance

condition and labeled as “-1”. The K-fold [66] cross-validation is used to separate

the generated data into the training set and testing set. In this paper, 10 fold cross

validation are selected; i.e., 90% of the generated data are used as the training data

and 10% are used as the testing data.

To maintain the voltage stability, the controller is required to make a quick

corrective action, to predict the status, and to deliver the control decisions [104, 47].

The overall control process is usually expected to take less than 1 second. In the

proposed method, the observation time is set to 100 ms. The prediction algorithm

is executed in a computer with Intel i7 3.0 GHz CPU and 12 GB RAM, and the

resulting average computation time for prediction is only 14.93 ms.

4.2.3 SVM prediction results

Voltage stability with PMUs fully placed

For the distribution system, assuming that every bus in the system is equipped

with a PMU, Table 4.1 illustrates that the prediction rate with such configuration is

100%, which demonstrates that the proposed method has higher successful predic-

tion rates than the method in reference [47] whose results are shown in Table 4.2.
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The performance improvement is due to the higher dimensional input vectors and

longer observation time in the proposed approach, thus, allowing more information

used in training of the SVM algorithm in the nonlinear system.

Table 4.1: Classification confusion matrix on distribution systems
Normal Disturbance

Normal 1(150/150) 0(0/150)

Disturbance 0(0/70) 1(70/70)

Table 4.2: Classification confusion matrix from reference[47]
Normal Disturbance

Normal 0.973(146/150) 0.027(4/150)

Disturbance 0.057(4/70) 0.943(66/70)

For the transmission system, assuming that every bus in the system is equipped

with a PMU, Table 4.3 illustrates that the prediction rate with such configuration is

100%, which demonstrates that the proposed method has higher successful predic-

tion rates than the method in reference [47] whose results are shown in Table 4.4.

Voltage stability with PMU optimally placed on selected buses

In real-world applications, the number of PMU is limited due to its cost. It is

imperative to optimally place PMUs in the distribution system. For the distribution

system, if PMUs are placed on buses 1, 3, 5, 8, 12, 13 the installation percentage is

42.8% of the total buses. The system is observable and the voltage on every bus of

Table 4.3: Classification confusion matrix on transmission systems
Stable Unstable

Stable 1(140/140) 0(0/140)

Unstable 0(0/60) 1(60/60)
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Table 4.4: Classification confusion matrix from reference[47]
Stable Unstable

Stable 0.978(137/140) 0.022(3/140)

Unstable 0.050(4/60) 0.950(56/60)

Table 4.5: Confusion matrix with limited PMUs on distribution systems
Normal Disturbance

Normal 1(150/150) 0(0/150)

Disturbance 0(0/70) 1(70/70)

the system can be calculated [89, 58]. The prediction result shown in Table 4.5 is

very good as well. Thus, the level of accuracy is not compromised. This provides

a way to predict the voltage stability with reduced number of but optimally placed

PMUs.

For the transmission system, if PMUs are placed on buses 2, 4, 6, 7, 8, 12, 14 the

installation percentage is 41.2% of the total buses. The system is observable and

the voltage on every bus of the system can be calculated [89, 58]. The prediction

result shown in Table 4.6 is very good as well. Thus, the level of accuracy is not

compromised. This provides a way to predict the transient voltage stability with

reduced number of but optimally placed PMUs.

4.3 Auxiliary control strategy based on model predic-

tive control

MPC has been successfully used in many industrial applications due to its ability

to handle the nonlinear MIMO control problems with constraints on the system

Table 4.6: Confusion matrix with limited PMUs on transmission systems
Normal Disturbance

Normal 1(140/140) 0(0/140)

Disturbance 0(0/60) 1(60/60)
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variables [84, 131]. In this paper, different types of faults in the power system with

renewable energy generation is considered and a flexible control strategy based on

MPC is proposed for the distribution system.

4.3.1 General control system formulation

The principle of MPC is illustrated in Fig. 4.4. Given the system state space

model and the constraints of the variables, at the current time t, the MPC solves an

constrained optimization problem over a finite prediction period [t, t + Tp] aiming

to minimize the predetermined objective function, where Tp is defined as the finite

prediction horizon. For example, in Fig. 4.4, the finite prediction horizon is Tp = 7.

The control variable is computed over the control horizon [t, t+Tc], where (Tp ≥ Tc).

It is assumed that the discrete time state space model of the MPC is given by

X(t+ 1) = A(t)X(t) +B(t)U(t) +D1(t)d1(t) (4.3.1)

Y (t) = C(t)X(t) +D2(t)d2(t) (4.3.2)

where X(t) ∈ Rn is the system states at time t. A(t) ∈ Rn×n, B(t) ∈ Rn×m and

C(t) ∈ Rl×n are the system control coefficient matrices, U(t) ∈ Rm is the control

vector of the system; Y (t) ∈ Rl is the output vector of the system; d1(t) and d2(t)

are the system state uncertainty and measurement noise, respectively, and their

coefficient matrices are D1(t) and D2(t).

4.3.2 Auxiliary control for different generators

Different from traditional MPC strategies [76, 71], the proposed control strategy

operates as an auxiliary controller and revises the control vector along the way. As

Fig. 4.5 illustrates, the control loop in black is the existing control loop for the TG,

which controls excitation voltage and mechanical power.
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Figure 4.4: Model predictive control concept

The proposed control strategy uses the two adder blocks in red dashed line, the

MPC controlled excitation voltage and MPC controlled mechanical power are two

auxiliary control variables that revise the excitation voltage and mechanical power

of the existing control loop. As shown in Fig. 4.6, the WTG controller controls the

pitch angles of the wind turbine and excitation voltage variables. Auxiliary MPC

blocks revise the pitch angle and excitation voltage variables in the existing control

loops.
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4.3.3 Optimization strategy for MIMO control

To achieve the objective of voltage stability control, the control strategy con-

siders both active power control and reactive power control. For the distribution

system, the auxiliary MPC controlled variables contain excitation voltage EAW =

[EAW1 EAW2]
T and pitch angle βAW = [βAW1 βAW2]

T for the WTGs. For the trans-

mission system, the auxiliary MPC controlled variables contain excitation EAG =

[EAG1 EAG2]
T and mechanical power MAG = [MA1 MA2]

T for the TGs; excita-

tion voltage EAW = [EAW1 EAW2]
T and pitch angle βAW = [βAW1 βAW2]

T for the

WTGs.

The optimization problems of both distribution system and transmission system

are very similar. In this part, the distribution system is taken as an example to

illustrate the optimization strategy on MIMO control.

The control vector U is the combination of the auxiliary MPC control vector

UMPC = [ET
AW βT

AW ]T and existing control vector UEX = [ET
W βT

W ]T . So U is

given by

U = UMPC + UEX . (4.3.3)
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The observation vector is the voltage measurements on bus 6, 9, 12, 13 denoted as

Vobs = [V6 V9 V12]
T . According to the discussion above, based on the state space

model, the optimization function can be defined as

J =

N1+Tp∑
j=N1

[
Ŷ (t+ j|t)−R(t+ j)

]T
O
[
Ŷ (t+ j|t)−R(t+ j)

]
(4.3.4)

+

1+Tc∑
j=1

∆UT (t+ j − 1)Q∆U(t+ j − 1)

=

N1+Tp∑
j=N1

ξT (t+ j)Oξ(t+ j)

+

1+Tc∑
j=1

∆UT (t+ j − 1)Q∆U(t+ j − 1).

Considering the realistic application, the constraints are

y
i
≤ yi ≤ ȳi, i = 1, 2, 3... (4.3.5)

ui ≤ ui ≤ ūi, i = 1, 2, 3...

where ξ(t+ j) is the error between the observation and the reference at time t+ j;

N1 is the beginning of prediction horizon; N1 + Tp is the end of prediction horizon;
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1 + Tc is the upper value of the control horizon. Y (t) is the observation vector

of the distribution system at time t, which is the voltage measurement defined as

before. The Ŷ (t+ j|t) is the expected observation vector of Y (t+ j) with available

information at instant t, R(t) is the reference observation vector. ∆ is defined as

1 − z−1, where z−1 is the backward shift operator. O is the weighting matrix for

predicted errors and Q is the weighting matrix for control moves. yi and ui are the

elements of the vector Y and U , respectively. y
i
and ȳi are the lower and upper

limits of yi; ui and ūi are the lower and upper limits of ui.

Specifically, in this paper, the auxiliary MPC controller is not performed when

the distribution system operates in a normal condition. The auxiliary MPC is

triggered if the SVM based method predicts that the distribution system voltage

will be unstable after a fault. For example, during the wind speed fluctuation or

when the level of generation is less than the loads, the voltage may fluctuate, and the

auxiliary MPC is triggered. It is assumed that the trigger time from SVM algorithm

is ts. So it is defined in (4) as N1=ts and the control horizon also starts at ts. In

order to enhance the control stability of the auxiliary MPC, the control horizon is

increased and it is defined that as Tc=Tp=Tstop. Therefore, the sensitivity of the

proposed control input in (4) can be represented as

∂J

∂UMPC
=

∂J

∂U

∂U

∂UMPC
(4.3.6)

=

ts+Tstop∑
j=ts

∂(ξT (t+ j)Oξ(t+ j))

∂U

+

1+Tstop∑
j=1

∂(∆UT (t+ j − 1)Q∆U(t+ j − 1))

∂U

Since the per-unit system is convenient in distribution systems, the reference

vector R(t) can be defined as constant R(t) = [1, 1, 1]T , where t ≥ N1. The control

weighting matrices O and Q affect the performance of the MPC controller. For the
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first item
∑ts+Tstop

j=ts
∂(ξT (t+j)Oξ(t+j))

∂U in (6), aiming to reduce the amplitude of the

voltage deviation in a shorter time, the O can be defined as O(j), which is a mono-

tonically decreasing sequence with time index j. So the first errors are penalized

more severely than the errors in subsequent periods, thus, provoking a tighter con-

trol. This means that the voltage deviations can be smoothed out quickly. On the

other hand, the second item
∑1+Tstop

j=1
∂(∆UT (t+j−1)Q∆U(t+j−1))

∂U in (6) is used to con-

strain the variance range of the input variables to meet the physical constraints in

real-world applications. The weight matrix Q affects the effectiveness of the control

variables in the system. If the elements of the Q are set small, the response of the

system will be fast. For different control strategies, the elements in Q are set differ-

ent. For the voltage control, the elements in Q, which correspond to the excitation

variables EAW = [EAW1 EAW2]
T of WTGs, are set smaller than others. Because

these variables play a more important role for reactive power control to smooth out

the voltage fluctuation quickly and effectively. Therefore, the optimization goal is

to minimize the optimization function (4), which can be written as

min J = min
{ ts+Tstop∑

j=ts

ξT (t+ j)O(j)ξ(t+ j) (4.3.7)

+

1+Tstop∑
j=1

∆UT (t+ j − 1)Q∆U(t+ j − 1)
}

with the same constraints as (5).

At each time step, through minimizing the objective function, the MPC predicts

the system state in the future time steps and computes the new control variables to

stabilize the distribution system.
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4.4 Control strategy design for LTI and LTV systems

In this part, the distribution system is taken as an example to illustrate control

strategy. The control strategy designed for transmission system is similar.

4.4.1 Linearization of a nonlinear power system

In this part, after the voltage disturbance condition is predicted by the SVM

predictor, the fault information including the fault identification and location can be

generated by the PMU based methods [65, 136, 43]. According the fault information,

the power system can be linearized on different equilibrium points, obtain the state

space models and control the system with the optimization functions [82, 73, 74]

If the equilibrium point Xe meets the requirements in [82], which is a solution

of the equilibrium equation of the power system, Xe is a stable equilibrium point.

If the fault caused disturbance is within the control shift Z0, the system can be

controlled on the stable equilibrium point Xe or very near to Xe. And the coefficient

matrices of the state space model can be linearised in the neighbourhood of Xe, the

state space model is expressed as

X(t+ 1) = AeX(t) +BeU(t) +D1ed1(t) (4.4.1)

Y (t) = CeX(t) +D2ed2(t) (4.4.2)

where Ae, Be, Ce, D1e and D2e are defined similar to the equations presented in (1)

and (2). In this condition, the power system state space model can be represented

in linear constant coefficient state space model in (8) and (9).

Since the power system may operate on different equilibrium points in differ-

ent scenarios, as the pretreatment of the auxiliary MPC, a state space modelling

approach is proposed based on stable equilibrium point tracking. The initial sta-

ble equilibrium point of the power system is computed and the corresponding state
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space model is built when the power system operates normally. It is assumed that

the fault happens at time t0, if the stable equilibrium point of the power system

does not change after the fault time t0, the state space model stays the same, and

the optimization function of MPC is computed based on this condition. If the sta-

ble equilibrium point changes after the fault time t0, the state space model will be

rebuilt, and a new optimization function will be computed to control the system.

4.4.2 Control strategy design for different system models

The voltage stability are classified into two subclasses, large-disturbance and

small-disturbance voltage stability [73]. As explained before, the stable equilibrium

point tracking is used for determining the two subclasses, and two types of post-fault

scenarios are studied in this paper.

Type I faults do not change stable equilibrium point of the distribution system

and the fault induced disturbance is smaller than the control shift. It is assumed

that the fault happens at time t0, and the state space model does not change before

and after t0. It is assumed that the equilibrium point is XeI . So the coefficient

matrices can be computed and state space model of this process are

X(t+ 1) = AIX(t) +BIU(t) +D1Id1(t) (4.4.3)

Y (t) = CIX(t) +D2Id2(t) (4.4.4)

where AI , BI , CI , D1I andD2I are the linearized coefficient matrices of the LTI state

space model. The optimization function keeps unchanged and the MPC computes

the auxiliary control variables to stabilize the voltage in the distribution system.

Type II faults are defined in Section 4.1. The distribution system operates on

the original stable equilibrium point. After the occurrence of fault, the distribution

system’s operation moves from the original stable equilibrium point to another stable
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equilibrium point. It is assumed that the fault happens in time t0 and the original

stable equilibrium point before t0 is XeI . As a result, before t0, the state space

model of the distribution system is the same as (10) and (11).

After t0, it is assumed that the system is operating on another stable equilibrium

point XeII and the state space model is denoted as

X(t+ 1) = AIIX(t) +BIIU(t) +D1IId1(t) (4.4.5)

Y (t) = CIIX(t) +D2IId2(t) (4.4.6)

where t ≥ t0, AII , BII , CII , D1II and D2II are the linearized coefficient matrices.

The elements and dimensions of the matrices may change in this faulty procedure.

And a new optimization function needs to be re-computed based on (12) and (13)

for the auxiliary MPC.

Therefore, according to the state space models on different stable equilibrium

points of the distribution system operation, the distribution system can be modelled

accurately in different fault scenarios, which makes auxiliary LTI MPC and LTV

MPC feasible.

4.5 Stochastic scheduling of economic dispatch with re-

newable energy

4.5.1 Wind turbine modelling

Wind turbine characteristics

In this paper, a regular wind turbine is considered, the power generation Pw as

a function of wind speed and wind turbine characteristics is given by [38]

Pw =
1

2
Cmv2 =

1

2
C(vSρ)(v2) =

1

2
CSρv3 = 0.6CSv3 (4.5.1)
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where ρ is the air density, here is 1.2928 kg/m3, S (m2) is the swept area of the

wind turbine, v (m/s) is the wind velocity, and C is the coefficient of the wind

turbine 4.5.1.

Stochastic wind power modelling

The stochastic wind power generation can be modelled as following.

• The IEEE 24-bus Reliability Testing System (IEEE-RTS) is used as test bench.

4 wind farms are used to substitute the 4 conventional power plant in the

IEEE-RTS. The 4 wind farms with nominal generation capacity of 150 MW,

250 MW, 400 MW and 600 MW, respectively.

• Each wind farm consists of a number of wind turbines, each with installed

capacity of 2 MW

• The wind speed data is acquired from NREL’s WesternWind Resource Database.

The wind speed information of each generator is chose randomly from database

9 times per day for 50 days.

• A sample of the output power of the wind farm with 400 MW nominal gen-

eration capacity is computed by (4.5.1). The output power results are fitted

into both Weibull distribution and Gaussian distribution in Fig. 4.7. The

comparison is shown as following.

The probability density function of a Gaussian random variable is

f (x, µ, σ) =
1

σ
√
2π

e
−
(x− µ)2

2σ2 (4.5.2)

where the parameter µ is the mean, the parameter σ is its standard deviation; and

its variance is therefore σ2 [64, 20].
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The probability density function of a Weibull random variable is and k > 0 is the

shape parameter and λ > 0 is the scale parameter of the distribution. If k = 1, it is

exponential distribution and if k = 2, it is the Rayleigh distribution [64, 117, 26].

f (x;λ, k) =


k

λ

(x
λ

)k−1
exp− (x/λ)k x ≥ 0,

0 x < 0

(4.5.3)

As it illustrated in Fig. 4.7, the red line is the fitting Weibull distribution with

scale parameter λ = 13.5 and shape parameter k = 2; the pink dashed line is the

fitting Gaussian distribution with µ = 12.09 and σ = 6.1534. The fitness error can

be calculate as in [69]. It is obviously that the Weibull distribution performs better

than the Gaussian distribution, especially for the negative part. The Gaussian

distribution fitting line has a negative part, but the Weibull distribution barely has

the negative part [64].

In addition, because the k = 2 here, the Weibull distribution can be seemed as

Rayleigh distribution in this scenario.

4.5.2 Formulation of joint economic dispatch and energy reserves

arg min
Ci,CWj

,CRj
,PGi

,PWj
,PRj

{ M∑
i=1

CiPGi +
N∑
j=1

CWjPWj +
N∑
j=1

CRjPRj

}
(4.5.4)

subject to (4.5.5),(4.5.6), (4.5.7), (4.5.8), (4.5.9).

Clow 6 Ci, CWj , CRj 6 Chigh (4.5.5)

Plow 6 PGi , PWj , PRj 6 Phigh (4.5.6)
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Figure 4.7: Wind speed fitting with Gaussian distribution and Weibull distribution

The hybrid economic dispatch problem is formulated as a optimization problem

aiming to find the lowest power operating cost while keep the reliability of the power

system. As shown in Fig. 4.8, the IEEE 24-bus Reliability Testing System (IEEE-

RTS) is used as the test bench for the study. It is assumed that 6 generators in the

power system are conventional energy generators and the rest are wind turbine gen-

erators. The optimization formulation including a objective function and constrains

is described as following.

PGi + (PWj + PRj ) = Pload (4.5.7)

M∑
i=1

PGi 6 Pload × γ (4.5.8)
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PWj + PRj 6 Phigh(Wj) + Phigh(Rj) (4.5.9)

Pr
{ n∑

j=1

(PWjCWj + PRjCRj ) 6 b
}
> α (4.5.10)

where PG is used to define the output power generated by the set of the con-

ventional generators. All wind turbine are operating as deloaded. PW and PR

are denoted the supplied power, respectively. PW = {PW1 , · · · , PWN
} denotes the

output power of the wind turbine generators, where PWn indicates the nth wind

turbine generator output. The output power of wind turbine generators is defined

as PR = {PR1 , · · · , PRN
}, where PRn denotes the power which can be supplied by

the nth wind turbine generator in the reserve market. Ci is the power operating cost

of conventional generators. CWj and CRj are used to represent the power operating

cost of wind turbine generators in spot market and reserve market, respectively. Clow

and Chigh are used to define the upper and lower price limit for the power operating

cost. The upper and lower power output limit of each generator are denoted by Plow

and Phigh. The power demand is described as Pload. γ is a ratio which represents

the ratio of the conventional power with respect to Pload. Phigh(Wj) + Phigh(Rj) is

the maximum output for the jth wind turbine generator. In real application, the

actual output power of each wind turbine generator must be less than its maximum

power generation.

4.5.3 Derivation and transformation of chance constraint

The “chance constraint” is used to describe that the probability of a random

event should be larger or smaller than a threshold. In this paper, the probability
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Figure 4.8: IEEE 24-bus RTS

larger than the threshold is take as an example.

Pr{
n∑

i=1

aixi 6 b} > α, (4.5.11)

where the event is
∑n

i=1 aixi 6 b, ai and xi are random variables, and b and α are

two variables that determines the constraints.

In detail, the formula 4.5.11 can be wrote as following. This is a probability

form and cannot be calculated by existed optimization programming language. This
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provide a new issue to solve. Furthermore, the probability constrain needs to be

transformed into a mathematical form that can be directly used by computational

algorithms, the transformation is derived as following

Pr
{ n∑

j=1

(PWjCWj + PRjCRj ) 6 b
}
> α. (4.5.12)

y(CWj , CWj ) =

n∑
i=j

(PWjCWj + PRjCRj )− b. (4.5.13)

The expectation and variance of y(CWj , CWj ) are:

E
(
y(CWj , CWj )

)
=

n∑
j=1

{E[PWj ]CWj +E[PRj ]CRj} − E[b] (4.5.14)

V
(
y(CWj , CWj )

)
=

n∑
j=1

{V [PWj ]C
2
Wj

+ V [PRj ]C
2
Rj
}+ V [b] (4.5.15)

Because each wind turbine generator has its controller, it is assumed that every

wind turbine generator in the wind farm is independent in this paper. Therefore,

each wind turbine generator is modeled independently.

Here, the Weibull distribution is used to forecast the wind speed and the output

power of a wind turbine generator can be calculated with formula 4.5.1.

According to the Lyapunov Central Limit Theorem [44], the formula can be

derived as

∑n
i=1(PWjCWj + PRjCRj )− b−

{∑n
i=1{E[PWj ]CWj + E[PRj ]CRj} − E[b]

}√∑n
i=1{V [PWj ]C

2
Wj

+ V [PRj ]C
2
Rj
}+ V [b]

∼ N(0, 1)

(4.5.16)
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Finally, as the formulas above, the chance constrain can be derived into a feasible

convex problem, which is a function and contains the mean and variance of the

original probability function.

n∑
j=1

{E[PWj ]CWj +E[PRj ]CRj}+ (4.5.17)

ϕ−1(α)

√√√√ n∑
j=1

{V [PWj ]C
2
Wj

+ V [PRj ]C
2
Rj
}+ V [b] 6 E(b)

where ϕ function is the cumulative distribution function of normal distribution [44].

In [56, 60, 138], the mean and variance of Weibull distribution are researched. The

mean of the Weibull distribution is

µ = cΓ
(
1 + k−1

)
(4.5.18)

The variance of the Weibull distribution is

σ2 = c2Γ
(
1 + k−1

)
− µ2 (4.5.19)

where the gamma function is defined as

Γ (x) =

∫ ∞

0
yx−1e−ydy, y > 0 (4.5.20)

In the condition k = 2, it is Rayleigh distribution and µ =

√
π

2
and σ2 =

C2(1− π/4). The formula 4.5.17 can be solved.

4.5.4 Optimization solution algorithm

Generally, there are several optimization tools such as CPLEX, CVX, and ge-

netic algorithm. CPLEX is an optimization tool, which is developed by IBM and
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usually be used in linear programming problems. The economic dispatch problem

is a nonlinear optimization problem in this paper, so the CPLEX cannot meet the

requirement. CVX is developed by Standford University, which cannot solve the

problem more complex than the Quadratic problem and it also cannot met the re-

quirement [91, 36]. The genetic algorithm (GA) is an artificial intelligence algorithm

to simulate natural evolutionary processes, through retaining a population of can-

didate solutions to search for the optimal one. Some techniques are used to create

candidate, which is inspired by crossover and selection. Compared with CPLEX and

CVX, GA provides a flexible and robust way to find the global optimum solution

for the optimization problem with the chance constraints. In [55, 54], a parallel

computation method is provided to reduce the computation load of GA. As a re-

sult, the GA is chosen to solve the proposed optimization problem with the chance

constraint.

4.5.5 Other algorithms

In real application, the wind turbine generator has a cut-in speed and a cut-

out speed, which is design to avoid exceeding safe electrical and mechanical load

limits [103]. This means that the wind turbine generator will not generate electrical

power when the wind speed is lower than the cut-in speed or higher than the cut-out

speed. Because of this, the formula 4.5.1 has some limitations. This characteristic

also causes that the output electrical power of the wind turbine generator is not a

continuous function, which means the traditional analytic methods have limitations

to solve this problem. Therefore, in [130, 128], the Monte Carlo sampling and Latin

Hypercube sample is used to solve this stochastic problems. Meanwhile, if combined

with the wind forecast information, such as Bayesian network and Kalman filtering

the energy scheduling strategy will be more effective and efficient [78, 16, 81].
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4.6 Unbalanced three-phase power flow calculation for

distribution system

Generally, there are four major methods to calculate power flow of distribu-

tion systems. The backward/forward sweep algorithm is an effective and efficient

method, which utilizes the radial topology feature of distribution system. In dis-

tribution systems, usually there is only one path from a leaf bus to the slack bus.

Based on this fact, the backward/forward sweep algorithm calculates the current

and voltage along the path [29, 132, 17]. In [140, 142], the revised Newton-Raphson

method is introduced, which linearises the revised power flow equations, then gen-

erates the power flow results. In [118, 30], the Z-bus method is introduced, which

is mainly based on the injection current of each bus, the bus voltage, and the ad-

mittance matrix. Based on the KVL, a loop current equation is built to calculate

the power flow of distribution system [49]. In this section, considering the feature

of distribution system, the method based on backward/forward sweep algorithm is

used to calculate the power flow of distribution systems. A 12-bus is used as test

bench.

4.6.1 Formulation of distribution system power flow

As shown in Fig. 4.9, there are three major components in the proposed method.

After the power system information is collected in the Data Input block. In the Basic

Data Analysis block, the branch information is analyzed, and the topology infor-

mation is collected. Then the adjacency matrix is built, which is a connectivity

matrix and contains the topology information of the distribution system. The sec-

ond major component is topology analysis, the depth-first search is used to collect

all the leaf buses in the distribution system. And the breadth-first search is used

to search different layers of the power system. In the third major component, the
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Figure 4.9: Flowchart of proposed power flow calculation in distribution system.

forward/backward sweep algorithm is used to calculate the power flow of the dis-

tribution system. When the voltage error between two iterations is smaller than a

preset threshold, the algorithm will stop and generate the result.

4.6.2 Depth-first search and breadth-first search

For the second component of the proposed method, the depth-first search (DFS)

and breadth-first search (BFS) is used to generate the leaf bus set and layers. In
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the distribution system, it is assumed that the direction of power flow is from the

slack bus to the leaf buses. Because of the radial topology characteristic of the

distribution system, each leaf bus has only one path to the slack bus. Therefore, in

the first step, the DFS is used to generate the leaf bus set. Based on the results of

DFS, the BFS is used to generate different layers, and then the backward/forward

sweep algorithm is implement to calculate the power flow.

The DFS is a traversal searching algorithm, which can be used to searching the

tree or graph data structures. At the beginning, the slack bus is set as the start

point or root for the DFS. Then the algorithm searches all the edges or branches of

the slack bus and chooses one of them. Through the selected branch, the new bus

is added into the path. The DFS algorithm repeats this action until it finds the leaf

bus. After the first path is generated, the DFS backtracks until all the buses are

traversed in the distribution system. Finally, the leaf bus set can be generated by

the DFS.

Based the leaf bus set generated by the DFS, the BFS is used to generate different

layers. At the beginning, the slack bus is also set as the start point or root for the

BFS, and indicates it as the first layer bus set. Then the algorithm explore all

the edges or branches of the slack bus and selects the buses connected to them as

the second layer bus set. Based on the second layer, the algorithm explore all the

branches started from the second layer bus set and selects the buses connected to

them as the third layer bus set. The stop condition of BFS algorithm is that all the

buses in the distribution system are explored. According to this algorithm, different

bus layer sets are generated, and the backward/forward sweep algorithm can be

implemented.

As shown in Fig. 4.10, the 12-bus distribution is analyzed with DFS and BFS.

The leaf bus set is {5, 6, 8, 10, 11, 12}. Through the BFS, the 12-bus distribution

system can be divided into 5 different layer sets, the first bus layer set is {1},

87



Slack Bus

<1> <2>

<3>
<6>

<4>

<8> <12>

<9>

<5>

<11>

<10>

<7>
Layer 1 Layer 2

Layer 3
Layer 4

Layer 5

Figure 4.10: Topology analysis for the 12-bus distribution system.

the second is {2}, the third is {3, 4, 5}, the fourth is {6, 7, 8, 9} and the fifth is

{10, 11, 12}.

4.6.3 Backward/forward sweep algorithm

Based on the topology analysis results, the backward/forward sweep algorithm

is used to calculate the power flow of the distribution system. This algorithm has

two major parts, backward sweep and forward sweep.

In this section, the backward sweep is used to calculate the current of each

branch. At the beginning, the algorithm explore all the buses in the deepest layer

set, for example, the deepest layer set is the fifth layer set in the 12-bus distribution
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system. The currents of the branches, whose terminal buses belong to the leaf bus

set, can be directly calculate. Then for the fourth layer set, the algorithm finds out

the leaf buses in this layer set, and calculate the current. For other buses, the KCL

is used to calculate their currents. Finally, all the currents can be calculated in the

backward sweep algorithm.

Table 4.7: The power flow results of the 12-bus distribution system
Bus No. A P.U. A Angle B P.U. B Angle C P.U. C Angle

1 1.0000 0.0000 1.0000 -120.0000 1.0000 120.0000
2 0.9747 0.2544 0.9711 -119.5238 0.9672 120.3589
3 0.9746 0.2818 0.9690 -119.5111 0.9677 120.3479
4 0.9746 0.3091 0.9669 -119.4983 0.9681 120.3369
5 0.9746 0.2818 0.9690 -119.5111 0.9677 120.3479
6 0.9709 0.3049 0.9659 -119.4445 0.9625 120.4094
7 0.9745 0.3089 0.9669 -119.4986 0.9681 120.3379
8 0.9744 0.3087 0.9669 -119.4988 0.9681 120.3386
9 0.9745 0.3089 0.9669 -119.4986 0.9681 120.3379
10 0.9745 0.3089 0.9669 -119.4986 0.9681 120.3379
11 0.9745 0.3089 0.9669 -119.4986 0.9681 120.3379
12 0.9746 0.3064 0.9669 -119.4905 0.9675 120.3380

In the forward sweep, with the current results of all the branches, the voltage can

be updated with the KVL. The stop condition is that the voltage magnitude error

between two iterations are smaller than a threshold, the algorithm can be deemed

as converged. In this section, the threshold is set to be 1−10.

The power flow calculation results of the 12-bus system are illustrated in Ta-

ble 4.7. It is noted that the voltage magnitudes and angles of the three phase are

unbalanced.
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Chapter 5

Numerical results

5.1 Numerical results of wavelet based fault location

We demonstrate our fault localization results using the IEEE 39-bus system and

suppose that every bus in the system is equipped with a PMU for real-time data

acquisition with a sampling rate of 1 kHz. The simulation duration is 2 s and all the

simulated faults start at 0.5 s. The short-term faults are set to last 10 cycles, about

0.167 s, and the long-term faults last to the end of simulation. We use the hybrid

clustering algorithm to cluster the feature WTCs into 5 subsets. And we note the

indexes of the feature WTC subsets is positively related with the distance from the

fault. For example, buses in subset 1 are closest to the fault location and buses in

subset 5 are the farthest ones. Using to the clustering results, the fault contour map

are drawn to locate the fault in the IEEE New England 39-bus system.

5.1.1 Transmission line fault

A three-phase short fault is set between Bus 4 to Bus 14 in the system. The

feature WTCs are clustered into 5 subset as in Table 5.1. The fault can be success-

fully located using the fault contour map as in Fig. 5.1. The blue circle which is
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near the boundary of the system corresponds to the subset 5 of the feature WTC

set C
(ml,nl)
l , and represents the lowest impact level. In this subset, the buses are

either directly connected to the generators or near them, as a result, these buses

have the smallest fluctuations in the system as the generators can compensate the

voltage fluctuation in power systems.

Table 5.1: Impact level of transmission line fault
Level Bus number

1st (nearest to fault) 4,14

2nd 3,5,6,7,11,13,15,18

3rd 2,8,9,10,16,17,21,24,26,27

4th 1,19,22,23,25,28

5th 12,20,29,30,31,32,33,34,35,36,37, 38,39

There is another smaller blue circle in the middle of the map, as there are two

transformers linking the buses in this area, which can also reduce voltage fluctuation.

The yellow, orange and pink circles represent the subsets 4, 3 and 2, respectively.

The voltage fluctuation gradually increases in these bus subsets. The subset 1 is

denoted with a red ellipse, and bus 4 is denoted with a red circle as it is with the

largest feature WTC value. The red ellipse and circle illustrate that the fault is

approximately located in this area and bus 4 is with the highest probability. Also,

the pink circle indicates the area where the electronic equipments would be damaged

if the fault exist for a long time.

5.1.2 Generator fault

Generator disconnection is a type of indispensable fault in generator fault. In this

paper, a generator disconnection at Generator 3 is investigated with the proposed

wavelet-based fault location approach in this section.

According to Table 5.2, the fault contour map is determined as in Fig. 5.2. The

colors of the circles from blue to red indicate different fault impact levels from light

91



<27>

<26><25> <28> <29>

<39>

<2>

<1>

<18> <17>

<3>

<4> <14>

<16>

<15>

<24>

<21> <22>

<19> <23>

<20>

<13>

<10>

<11>

<12><6>

<5>

<7>

<8>

<9>

G1

<30>

G10

<37>

G8

G8

<38>

G7

<36>

<35>

G6

G4

<33>

G5

<34>

G3

<32>

G2

<31>

Figure 5.1: Fault contour map for transmission line

to heavy. The generator fault is localized at Generator 3 on Bus 32 using the pink

and red circles. Bus 10, the nearest bus to generator 3, has the second largest fault

impact, which is indicated by a red ellipse.

Table 5.2: Impact level of generator disconnection fault
Level Bus number

1st (nearest to fault) 10,32

2nd 11,13,14

3rd 4,5,6,7,8,15

4th 2,3,16,17,18,21,24,27,

5th 1,9,12,19,20,22,23,25,26,28,29,30,
31,33,34,35,36,37,38,39
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Figure 5.2: Fault contour map for generator disconnection

5.1.3 Load fault

The transformer fault, transmission line fault, and generator fault are discussed

as above. In this paper, a load grounding at Bus 15 is investigated as load fault in

this paper.

According to Table 5.3, the fault contour map is determined as in Fig. 5.3. As we

can see, Bus 15 has the largest fault impact which is circled with red. The blue circle

and yellow circle cross at Bus 38 where Generator 9 is located and compensates the

power loss.
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Table 5.3: Impact level of load fault
Level Bus number

1st (nearest to fault) 15

2nd 13,14,16,17,24

3rd 3,4,11,18,21,27

4th 2,5,6,7,8,9,19

5th 1,10,12,20,22,23,25,26,28,29,30,
31,32,33,34,35,36,37,38,39
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Figure 5.3: Fault contour map for load ground

5.2 Numerical results of data-driven fault diagnosis ap-

proach

The proposed fault detection, identification and location approach is demon-

strated with the IEEE New England 39-Bus System simulated in PSCAD. It is
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assumed that a FDR is equipped at every bus, which performs real-time data ac-

quisition. The sampling rate of the FDRs is 1 kHz.

Four fault types are investigated in our numerical simulation, which are generator

ground fault I, transmission line outage II, generator outage III and load loss IV .

The simulation lasts 5 s and the fault randomly occurs at 2, 2.5, 3, 3.5, 4 s with

duration of 5 or 10 cycles. For each fault simulation, the power system component

from all generators, loads and transmission lines in the 39-bus system are randomly

chosen, and different types of faults are simulated to obtain sufficient training data.

For the transmission line outage, the faults are created randomly at 5%, 50%, 75%,

and 90% of the line distance between the two connecting buses. For the MPD feature

extraction, a Gaussian atom dictionary with 1,800,000 normalized Gaussian atoms

is built. Considering the trade-off between residual signal energy and computation

load, the iteration number is set as 30 for frequency signal feature extraction and

10 for voltage signal feature extraction. The number of symbols is Aobs = 256

for frequency signal processing. The DHMMs with hidden state number of 3, 4,

and 5 are modelled to compare the recognition performance. The SNR of FDR

measurements is usually larger than 72 dB as shown in [137, 141]. To evaluate the

performance of the proposed approach in much worse noise scenarios, our approach

is evaluated using the signals with 10 dB SNR.

All simulations are executed in a laptop with Intel i7 3.0 GHz CPU and 8 GB

RAM, and the proposed detection, identification and location algorithms are imple-

mented in Matlab. The computation time for frequency signal feature extraction and

classification is 0.9 s and for voltage signal processing is 0.5 s. Because the frequency

and voltage signal processing channels work in parallel, the total computation time

is less than 1 s.
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5.2.1 Feature extraction results

For a simulation period of 5 s, 5000 data samples are collected for analysis. After

the 10 MPD iterations for feature extraction, the 5000 data samples are extracted

into 10 four-dimensional feature vectors [α, τ, ν, σ]T , with each representing the am-

plitude, time-shifting, frequency-shifting and variance of the Gaussian atoms. The

total data number is 10× 4 = 40, and the data compression rate is 125.

5.2.2 HMM based fault detection and identification results
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Figure 5.4: Fault identification rate comparison

1) From the confusion matrices and Fig. 5.4, we notice that compared with dis-

crete HMMs, the continuous HMMs perform better in fault identification. Although

in some scenarios, the identification rates are almost the same between discrete and

continuous HMMs, such as the discrete HMM with 3 states and the continuous

HMM with 6 Gaussian components. The average identification rate using continu-

ous HMMs, 0.876, is higher than the result from discrete HMMs, 0.855. Considering
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the cases of signals with additive white Gaussian noise (AWGN), the HMMs with-

out noise have higher identification rate for all the Discrete HMMs and Continuous

HMMs.

2) For the performance under different SNRs, the identification rate increases

when the SNR increases. For example, compared with SNR 5 dB of the identifica-

tion, 10 dB identification rate, the average fault identification rate increases from

79.6% to 83.6%. Actually, it can be explained that with the energy of noise decreas-

ing, the margin between different fault types are becoming wider and the identifica-

tion rate is increasing. When SNR = 5 dB, both the discrete and continuous HMM

based classifiers have the lowest identification rate, but they are still above 75%,

which meets the requirement of real-world applications. For noise-free cases, both

the discrete and continuous HMM based classifiers have the highest identification

rate, which are above 90%.

3) For different numbers of hidden states in Discrete HMMs, the HMMs with 4

or 5 hidden states perform better than 3-state HMMs in some conditions, such as

10 dB SNR, the load grounding fault identification rate with 4 and 5 hidden states

is higher than 3 hidden states. But in average, according to the identification rate

in confuse matrices, the HMMs with 3 hidden states are more robust with respect

to different SNRs.

4) The identification rate in fault detection: the identification rate between ab-

normal and normal SG states is 100%, which implied that the identification margin

between abnormal and normal states is large enough for clear identification in all

the experiment scenarios.

According to these results, the HMM based method performs very well in fault

detection and identification, which provides a novel way to detect and identify the

faults based on PMU data in real time.
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Table 5.4: Confusion matrix of fault detection between different conditions
Normal Abnormal

Normal 100% 0

Abnormal 0 100%

Table 5.5: Confusion matrix of fault diagnosis, SNR = 70 dB

Discrete HMM with 3 States Discrete HMM with 4 States

I II III IV I II III IV

I 0.951 0 0 0.049 0.923 0 0.035 0.042

II 0.027 0.962 0 0.011 0.038 0.962 0 0

III 0 0 0.958 0.042 0 0.066 0.918 0.016

IV 0.019 0 0.016 0.965 0 0.063 0.030 0.907

Discrete HMM with 5 States Continuous HMM

I II III IV I II III IV

I 0.928 0 0.020 0.042 0.961 0 0.010 0.029

II 0.075 0.903 0 0.022 0 0.971 0.029 0

III 0 0.046 0.933 0.021 0 0.026 0.953 0.021

IV 0.036 0.013 0.038 0.913 0.013 0 0.012 0.975

Table 5.6: Confusion matrix of fault diagnosis, SNR = 5 dB

Discrete HMM with 3 States Discrete HMM with 4 States

I II III IV I II III IV

I 0.826 0.044 0.081 0.049 0.810 0.058 0.076 0.056

II 0.087 0.802 0.088 0.023 0.051 0.821 0.064 0.064

III 0.034 0.103 0.781 0.082 0.074 0.067 0.769 0.090

IV 0.079 0.048 0.086 0.787 0.080 0.101 0.049 0.770

Discrete HMM with 5 States Continuous HMM

I II III IV I II III IV

I 0.812 0.087 0.059 0.042 0.826 0.054 0.103 0.017

II 0.055 0.820 0.074 0.051 0.075 0.823 0.053 0.049

III 0.089 0.090 0.775 0.046 0.062 0.074 0.811 0.053

IV 0.067 0.099 0.042 0.792 0.077 0.043 0.073 0.807

5.2.3 Results with limited distributed synchrophasor sensors

In real-world applications, the number of the FDRs is limited and cannot be

placed in every bus due to installation and operation costs. It is assumed that the
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Table 5.7: Confusion matrix of fault diagnosis, SNR = 10 dB

Discrete HMM with 3 States Discrete HMM with 4 States

I II III IV I II III IV

I 0.852 0.035 0.064 0.049 0.821 0.081 0.062 0.036

II 0.058 0.820 0.061 0.061 0.070 0.843 0.018 0.069

III 0.067 0.023 0.846 0.064 0.063 0.049 0.812 0.076

IV 0.071 0.030 0.063 0.836 0.096 0.063 0.030 0.811

Discrete HMM with 5 States Continuous HMM

I II III IV I II III IV

I 0.830 0.024 0.049 0.097 0.858 0 0.087 0.055

II 0.063 0.839 0.077 0.021 0.066 0.854 0.023 0.047

III 0.084 0.021 0.812 0.083 0.043 0.011 0.850 0.096

IV 0.046 0.022 0.038 0.821 0.042 0.032 0.105 0.821

FDRs on bus 1, 2, 5, 6, 13, 14, 17, 19, 22 are removed, and our approach is applied

on the signals collected from the remaining FDRs. The fault detection rate of 99.1%

and the fault identification rate of 91.9% are achieved using CHMM without noise.

It is noted that the optimal FDR placement and minimization of the number of

FDRs are still open problems for research [58].

5.2.4 Comparison with other methods

In [72, 2, 97, 8], artificial neural network (ANN) and support vector machine

(SVM) are studied to detect and diagnose faults in power systems. ANN is a super-

vised learning model with hidden neurons, which can be used for fault classification

and pattern recognition. SVM is also a supervised learning model, which builds a

hyperplane for feature classification.

Using the same simulation test bench as described at the beginning of Section 5.1,

the fault detection rates and identification rates obtained using ANN, SVM, and our

proposed approach are demonstrated. For the proposed method in this paper, the

CHMM fault detection and identification rates are used for comparison.
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Figure 5.5: Fault detection and identification rate compared with other methods

As shown in Table 5.8, the detection and identification rates achieved by the

three methods are all very high. The proposed method performs best among them,

especially for fault identification under low SNR scenarios, because the MPD used

in the proposed method can preserve signal feature and depress noise.

As shown in Table 5.9, with limited FDRs, the proposed method performs better

than the other two methods, especially in low SNR scenarios. The fault detection

rate of the proposed approach is still very high, but the fault identification rates are

lower compared with the identification results obtained by the proposed approach

in Table 5.8. On one hand, this illustrates that, under the condition of a reduced

number of FDRs, the proposed approach is more robust than the other two methods.

On the other hand, this fact also illustrates that the reduced number of FDRs

impacts fault identification greatly due to the loss of useful information.
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Table 5.8: Detection and identification rates of different methods
Detection Identification Identification 10 dB

ANN 99.8% 93.2% 80.7%

SVM 99.7% 94.5% 78.2%

Proposed Method 100% 97.5% 87.7%

Table 5.9: Detection and identification rates with limited FDRs
Detection Identification Identification 10 dB

ANN 93.8% 81.6% 72.7%

SVM 94.7% 83.3% 67.5%

Proposed Method 99.1% 91.9% 80.2%

5.2.5 Fault location results

The generator outage at bus 32 is used to demonstrate an example of our fault

location results. After being processed by the clustering algorithm, the 39 buses are

classified into 5 different levels as in Table 5.10. According to the result of clustering

which indicates different fault impact levels, the fault contour map is generated as

shown in Fig. 5.6.

Table 5.10: Impact level of generator outage
Impact Level Bus number

1st (nearest to fault) 32

2nd 10,11,13,

3rd 4,5,6,7,8,14,15

4th 2,3,16,17,18,24,27,

5th 1,9,12,19,20,21,22,23,25,26,28,
29,30,31,33,34,35,36,37,38,39

As in Fig. 5.6, the colours of the circles from dark to light indicate the impact

of the fault from heavy to small. The lightest dashed circle outside indicates the

smallest impact due to the generator outage. As a power source is connected to

bus 39, the fluctuation is smaller due to compensation from this generator. As a

result, there are very small fluctuations in bus 39, 1, and 9. The voltage fluctuation

in bus 12 is reduced because there is a transformer linking the high voltage buses
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11, 13 and the low voltage bus 12. With the colours from light to dark, the circles

shrink towards the fault area gradually, which indicates that the impact of the fault

increases in these areas. Bus 32 suffers the largest impact, as it is directly connected

to generator 3, which is indicated by a black circle. As a result, the fault impact

area and location of the fault are determined by the fault contour map.

To evaluate the performance of the fault location method, 80 different random

faults, including generator ground faults, transmission line outage, generator outage

and load loss, are randomly generated and simulated at different locations in the

IEEE New England 39-bus system, to evaluate the fault location method’s perfor-

mance. The success rate of locating a fault is 100%, and it can be concluded that

the proposed location approach is robust given the above experimental scenarios

and setup.

5.3 Numerical results of WAM with OSSP

In order to demonstrate the proposed spatial-temporal synchrophasor measure-

ment system characterization approach and its application on fault detection and

identification, the IEEE 14, 30, 39 bus systems are employed for experiments on

numerical simulations. All the simulations are executed using a computer with 3.00

GHz Intel i7 CPU and 12 GB RAM. The resulting binary integer linear program-

ming is solved by CPLEX Toolbox for Matlab, and the overall OSSP is studied with

Matlab with Power System Analysis Toolbox (PSAT). The time consumed for each

simulation is less than 1 s. Five power system fault scenarios are simulated with

(I) Ignoring the effect of ZIB, (II) Considering the effect of ZIB, (II) Single Line

Outage, (IV) Single Sensor Outage, and (V) Single Sensor/Line Outage. The effect

of ZIB is considered in scenarios III, IV, and V.
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Figure 5.6: The fault contour map for generator outage at bus 32

5.3.1 OSSP and data volume reduction

In Table 5.11 and 5.12, the OSSP results in IEEE 30 and IEEE 39 bus systems

are illustrated, respectively. The SG requires less number of sensors if the effect of

ZIB is considered. If the scenarios of single sensor outage or single line outage are

considered, more sensors are required for full observation of SG. From the OSSP

results in Table 3.3 to 5.12, the synchrophasor sensor installation rate, which is

defined as the ratio of the sensor number to the total number of buses, is 45%.

And it can be noticed that, if the power system is larger, the synchrophasor sensor
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installation rate will be further decreased. In Fig. 5.7, in scenario II, the installation

is the lowest and in scenario V is the highest.
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Figure 5.7: Synchrophasor installation rate in different scenarios

For a simulation period of 12 s, 12000 data samples are collected for system anal-

ysis [137]. After 30 MPD iterations for feature extraction, the 12000 data samples

are extracted into 30 four-dimensional feature vectors [α, τ, ν, σ]T , with each repre-

senting the amplitude, time-shifting, frequency-shifting and variance of the Gaussian

atoms. The total data number is 30×4 = 120, and the data compression rate, which

is defined as the data volume generated by the spatial-temporal characterization to

the original data volume, is 1.00%. Considering OSSP, for example, in Table 5.12

or in Fig. 5.7, with the IEEE 39-bus system and Scenario I, the sensor installation

rate is 33.3%. Therefore, the total data compression rate can reach 0.33%, which

substantially reduce the data volume of the synchrophasor measurement system.
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Table 5.11: Comparison of OSSP results in IEEE 30-bus system
Type Number Location of Sensors Rate

I 10 2, 4, 6, 9-10, 12, 15, 18, 25, 27 33.3%

II 7 2, 4, 10, 12, 15, 18, 27 23.3%

III 14 1, 4-5, 10-13, 15, 17-18, 20, 24, 26, 30 46.7%

IV 18 2-5, 7, 10, 12-13, 15-17, 19-20, 22-24, 27, 29 60.0%

V 20 2-5, 7, 10-13, 15-17, 19-20, 22-24, 26-27, 29 66.7%

Table 5.12: Comparison of OSSP results in IEEE 39-bus system
Type Number Location of Sensors Rate

I 13 2, 6, 9-10, 13-14, 17, 19-20, 22-23, 25, 29 33.3%

II 8 3, 8, 10, 16, 20, 23, 25, 29 20.5%

III 17 3, 8, 16, 18, 23, 27-28, 30-39 51.5%

IV 21 2-3, 6, 8-10, 13, 16-17, 20, 22-23, 25-27, 29, 34, 36-39 53.8%

V 22 1, 3-4, 8, 16, 18, 20, 23, 25-27, 29-39 56.4%

5.3.2 Fault detection and identification

Six representative fault types are employed for evaluating the proposed charac-

terization approach, which are generator ground, load loss, generator outage, single

transmission line ground, and three-phase transmission line ground. The simulation

of each fault lasts 5 s and the fault randomly occurs at 2, 2.5, 3, 3.5, and 4 s with

duration for 5 and 10 cycles. The Gaussian atom dictionary is built with 1,800,000

Gaussian atoms and the MPD iteration number is 30. The discrete HMM employs

an observation symbol set with 256 symbols and 3 hidden states. In this paper, 10

fold cross validation are selected; i.e., 90% of the generated data are used as the

training data and 10% are used as the testing data. For evaluating fault detection

performance, 240, 260 and 260 random faults are simulated to generate training

and testing data in the IEEE 14-bus system, IEEE 30-bus system and IEEE 39-bus

system, respectively. Similarly, for fault identification, 270, 350 and 350 random

faults are simulated to generate training and testing data for the above three power

systems, respectively. Among the aforementioned data, 90% of the data are used for

training and 10% are used for testing. An additive white Gaussian noise (AWGN)
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Table 5.13: Comparison of OSSP results in IEEE 118-bus system
Scenario
Type

Number of
Sensors

Location of Sensors Installation
Rate

I 32 3, 5, 9, 12, 15, 17, 21, 23, 28, 30, 34,
37, 40, 45, 49, 53, 56, 62, 64, 68, 71,
75, 77, 80, 85-86, 90, 94, 102, 105,
110, 115

27.1%

II 28 3, 8, 11-12, 17, 21, 27, 31-32, 34, 37,
40, 45, 49, 53, 56, 62, 72, 75, 77, 80,
85-86, 91, 94, 102, 105, 110

23.3%

III 56 1, 7, 10-12, 15, 17, 19, 21, 23-25,
27, 29, 32-34, 36, 40, 42, 44, 46, 49,
51, 53, 56-57, 59, 62, 66, 73-74, 77,
79, 83, 85, 87, 89, 91-92, 94, 96-101,
105-109, 111-112, 114, 116-118

47.5%

IV 65 1, 3, 6, 8-9, 11-12, 15, 17, 19, 21-
24, 27, 29, 31-32, 34, 36-37, 40, 42,
44-46, 49-51, 53-54, 56, 59, 62, 66,
69-71, 75, 77-78, 80, 83, 85-87, 89,
91-92, 94, 96-101, 105-106, 109-112,
114, 117-118

55.1%

V 65 2-3, 6, 8, 10-12, 15, 17, 19, 21-22,
24-25, 27-28, 31-34, 36, 40, 42-43,
45-46, 49, 51-52, 54, 56-57, 59, 62,
66, 70, 73, 75-78, 80, 83, 85-87, 89-
90, 92, 94, 96-101, 105-106, 109-112,
114, 116-117

55.1%

with SNR 10 dB is used for evaluating the performance with noisy measurements.

With synchrophasor sensors placed on every bus in the IEEE 14, 30, 39 ,and 118

bus systems, the results of the fault detection and identification rates are illustrated

in Table 5.14 and Fig. 5.8. The fault identification curves in the same shape illus-

trates that the proposed method is stable and robust for different power systems in

different scenarios. It is obviously that the fault identification rates in the scenarios

without noise is higher than the fault identification rates with noise. The average

detection rate is 100.0% and the average identification rate is 96.2%. Incorporating

the OSSP results, the fault detection and identification rates are illustrated from
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Figure 5.8: Fault identification rate in different systems and different scenarios

Table 5.15 to 5.21. The average detection rate is 100% for noiseless cases, and 99.3%

with SNR 10 dB. The average identification rate is 91.9% for noiseless and 82.0%

with SNR 10 dB. The noise has greater impact on fault identification rate than

detection rate. The highest detection rate with OSSP is 100%, which is the same as

the detection rate when the sensors are installed on every bus of the system. The

highest identification rate with OSSP is 93.7%, which is close to the identification

rate when the sensors are installed on every bus of the system.

Table 5.14: Fault detection and identification rates without OSSP
Detection Rate Identification Rate

IEEE 14 Bus System 100%(240/240) 96.3%(260/270)

IEEE 30 Bus System 100%(260/260) 95.7%(335/350)

IEEE 39 Bus System 100%(260/260) 96.6%(338/350)

IEEE 118 Bus System 100%(260/260) 97.1%(340/350)
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Table 5.15: Fault detection and identification rates in IEEE 14-bus system
IEEE 14 Bus System Detection Rate Identification Rate

I 100%(240/240) 91.9%(245/270)

II 100%(240/240) 90.9%(245/270)

III 100%(240/240) 92.2%(249/270)

IV 100%(240/240) 93.5%(252/270)

V 100%(240/240) 93.7%(253/270)

Table 5.16: Fault detection and identification rates in IEEE 30-bus system
IEEE 30 Bus System Detection Rate Identification Rate

I 100%(260/260) 90.2%(316/350)

II 100%(260/260) 88.7%(310/350)

III 100%(260/260) 91.7%(321/350)

IV 100%(260/260) 93.1%(326/350)

V 100%(260/260) 93.4%(327/350)

Table 5.17: Fault detection and identification rates in IEEE 39-bus system
IEEE 39 Bus System Detection Rate Identification Rate

I 100%(260/260) 90.0%(315/350)

II 100%(260/260) 88.3%(309/350)

III 100%(260/260) 92.3% (323/350)

IV 100%(260/260) 92.8% (325/350)

V 100%(260/260) 93.1% (326/350)

Table 5.18: Fault detection and identification rates in IEEE 118-bus system
IEEE 118 Bus System Detection Rate Identification Rate

I 100%(260/260) 90.6%(317/350)

II 100%(260/260) 89.1%(312/350)

III 100%(260/260) 93.4% (327/350)

IV 100%(260/260) 94.2% (330/350)

V 100%(260/260) 94.0% (329/350)

Table 5.19: Detection and identification rates in IEEE 14-bus system with noise
IEEE 14 Bus System Detection Rate Identification Rate

I 98.8%(237/240) 80.1%(216/270)

II 97.5%(234/240) 78.1%(211/270)

III 100%(240/240) 83.5%(225/270)

IV 100%(240/240) 84.1%(227/270)

V 100%(240/240) 84.8% (229/270)
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Table 5.20: Detection and identification rates in IEEE 30-bus system with noise
IEEE 30 Bus System Detection Rate Identification Rate

I 98.9%(257/260) 81.1%(284/350)

II 97.3%(253/260) 78.5%(275/350)

III 100%(260/260) 82.6%(289/350)

IV 100%(260/260) 83.7%(293/350)

V 100%(260/260) 83.9%(294/350)

Table 5.21: Detection and identification rates in IEEE 39-bus system with noise
IEEE 39 Bus System Detection Rate Identification Rate

I 98.9%(257/260) 81.4% (285/350)

II 98.1%(255/260) 78.0%(273/350)

III 100%(260/260) 83.1%(291/350)

IV 100%(260/260) 83.4%(292/350)

V 100%(260/260) 84.2%(295/350)

Table 5.22: Detection and identification rates in IEEE 118-bus system with noise
IEEE 118 Bus System Detection Rate Identification Rate

I 97.6%(254/260) 80.2% (281/350)

II 97.3%(253/260) 79.7%(279/350)

III 100%(260/260) 82.6%(289/350)

IV 100%(260/260) 84.2%(295/350)

V 100%(260/260) 84.9%(297/350)

5.3.3 Comparison with other methods

In [2, 8], artificial neural network (ANN) and support vector machine (SVM) are

utilized to detect and diagnose faults in power systems. Using the same simulation as

described at the beginning of Section 5.1, the fault detection rates and identification

rates obtained using ANN, SVM, and our proposed approach are demonstrated in

Table 5.23.

The proposed method performs better than the other two methods, especially

in low SNR scenarios. On one hand, this illustrates that, under the condition of

optimal FDR placement, the proposed approach is more robust than the other two
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methods. On the other hand, this fact also illustrates that the reduced number of

FDRs impacts fault identification greatly due to the loss of useful information.

Table 5.23: Detection and identification rates of different methods with OSSP
Detection Identification Identification 10 dB

ANN 92.7% 82.3% 71.3%

SVM 94.5% 84.2% 69.6%

Proposed Method 99.3% 91.9% 82.0%

5.4 A fast voltage security assessment approach for IEEE-

39 Bus System

The IEEE-39 bus system is shown in Fig. 3.1. Because the IEEE 39-bus system

is larger than the IEEE 14-bus system, the three-phase symmetrical fault will not

heavily impact the whole power system.

In this condition, the criterion of voltage drop of the wind power plant’s inter-

connection as the bus is that the voltage drop is below 80% of normal. Considering

the nature hazards, the transmission lines between Bus 16 and 17, and Bus 25 and

26 are outaged. The numerical simulation of the proposed approach is illustrated in

Table 5.24. To verify the results, the three-phase symmetrical fault is simulated in

PowerWorld. The simulation results are illustrated in Table 5.25.

Comparing the result of the proposed approach to the dynamic simulation, the

critical bus sets of the proposed approach contain the critical bus sets of the dynamic

simulation in the normal scenario and transmission line outage scenario, respectively.

Because the proposed approach does not contain all the elements of the relay pro-

tection, it is a conservative, but as additional basic dynamic information about the

power system is available, the proposed approach will become more accurate.
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Table 5.24: Voltage stability assessment with the proposed approach

Scenario Type Voltage Impact Size Critical Bus

Normal Condition 18 16 27 3 15 24 4 14 2 5 6 25 13 26
30 21 22 23 19 10 11 39 12 37 7 8 32
35 31 28 29 20 33 36 1 9 38 34

18 16 27 3 15 24 4 14
2 5 6 25 13 26 30 21
22 23 19 10

Transmission Line
Outage

18 27 26 3 28 4 2 5 6 29 8 38 30 7
10 25 1 37 39 15 12 14 9 11 13 32 31
16 24 21 22 23 19 34 36 35 20 33

18 27 26 3 28 4 2 5 6
29 8 38 30 7 10 25 1
37

Table 5.25: Voltage stability assessment with the dynamic simulation

Scenario Type Voltage Impact Size Critical Bus

Normal Condition 18 27 16 24 15 3 21 26 22 23 2 19 14
4 25 30 20 33 35 13 12 28 10 11 5 6
37 7 8 34 36 29 31 32 1 9 38 39

18 27 16 24 15 3 21
26 22 23 2 19 14 4 25
30

Transmission Line
Outage

27 18 26 28 3 29 2 38 30 25 37 4 1 8
31 5 7 39 6 12 14 9 11 13 10 32 15
16 24 20 21 33 34 23 19 22 35 36

27 18 26 28 3 29 2 38
30 25 37 4 1

5.5 Numerical results of renewable integration on the

distribution system

The constraints on the control variables are shown in Table 5.26. All simulations

are executed using a computer with an Intel i7 3.0 GHz CPU and 12 GB RAM,

and the simulation software for the proposed approach is Matlab Simulink. The

data length for the SVM to classify normal and abnormal conditions is 100 ms;

the computation time for SVM is 20 ms; the computation time for MPC auxiliary

control variables is 35 ms; and extra time consumption such as system delay is

10 ms. The resulting total consumption time is 165 ms.

Table 5.26: Constraints of the model predictive control variables
Lower Limits Variable Upper Limits

0.0 P.U. EAW1, EAW2, EAW3 1.2 P.U.

0◦ βAW1, βAW2, βAW3 30◦

0.0 P.U. V6, V9, V12, V13 1.5 P.U.
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5.5.1 Model predictive control with LTI model

Wind Power Loss. In this study case, the switch Sw to load L14 is open, and the

1.5 MW load does not connect to the distribution system. As Fig. 5.9 illustrates,

it is assumed that there are two different profiles of wind speed for the two WTGs,

respectively. In order to create power margins for voltage regulation, deloaded

WTGs operate at about 80% maximum available power.

As shown in Fig. 5.9, the blue curve and red curve illustrate the wind speed of

WTG 1 and 2, which are connected to bus 9 and 12, respectively. At the beginning

of the simulation, the wind speed is declining lightly from 1 s to 4 s, which causes

the reduction of the output power of the WTGs. As shown in Fig. 5.10, the voltage

curves are deviating lightly. Then, during time period 4 s to 7 s, the wind power is

further decreasing, especially for the red curve. As a result, in Fig. 5.10, the voltage

curve of bus 9 and 12 are deviating dramatically, especially for bus 12. Finally, at

6.7 s the voltage is below 0.4 p.u., thus indicating the failure of the distribution

system.

5.0 m/s

7.0 m/s

9.0 m/s

11.0 m/s

13.0 m/s

15.0 m/s

0s 1s 2s 5s 6s 7s 8s 9s 10s3s 4s

WTG 1 WTG 2

Figure 5.9: Wind speed of the two wind turbines

In order to remedy the situation presented in Fig. 5.10, the proposed approach

is employed. At the beginning, the decreasing wind speeds cause the voltage devi-

ation, and the auxiliary MPC is triggered immediately to compensate for voltage
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Figure 5.10: Voltage on bus 6, 9, and 12

reduction. The auxiliary MPC controlled pitch angle and excitation voltage vari-

ables are illustrated for the WTGs. In Fig. 5.11, the pitch angle curves of the two

WTGs change to increase the output active power. As shown in Fig. 5.9, the wind

speed of WTG 1 decreases more smoothly than the wind speed of WTG 2. As a

result in Fig. 5.11, the MPC control pitch angle of WTG 1 also decreases smoothly

than that of WTG 2. From t = 4 s, the MPC controlled pitch angles decreases

acutely to generate more active power when the wind speed declines at the same

time. In Fig. 5.12, the MPC controlled excitation voltage variables varies to gen-

erate appropriate reactive power and compensate for the voltage drop. The MPC

controlled excitation voltage variable for WTG 2 is larger than WTG 1, which is

used to compensate more reactive power for bus 12.

After the proposed method is employed, the improvement to bus voltages are

shown in Fig. 5.13, and the voltage collapse is avoided. Since the proposed method

is applied at the beginning to compensate the wind power loss, the voltage of the

four buses is controlled within the range from 0.97 p.u. to 1.03 p.u. during t = 1 s

to t = 4 s. As shown in Fig. 5.9, from t = 4 s to 7 s, the wind power dramatically

deceases, as a result, the compensated voltages in Fig. 5.13 decline lightly; and the

voltages are controlled within the range from 0.95 p.u. to 1.02 p.u.. It is noticed

that the voltages collapsed during t = 4 s to 7 s in Fig. 5.10 if the proposed control
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Figure 5.11: Proposed method for the auxiliary pitch angle variables
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Figure 5.12: Proposed method for the auxiliary excitation voltage variables

strategy is not applied. In addition, the voltage curves of the four selected buses

are more consistent with each others, and the voltage deviations are less than 2%.

0.94 p.u.

0.96 p.u.

0.98 p.u.

1.00 p.u.

1.02 p.u.
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Bus 6 Voltage

Bus 9 Voltage

Bus 12 Voltage

Figure 5.13: Voltage controlled by the proposed method.
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5.5.2 Model predictive control with LTV Model

Load Switching. As shown in Fig. 4.2 illustrates, the switch Sw is open, and

a 1.5 MW load is not connected to bus 6 and the distribution system operates in

normal condition. At t = 1 s, the switch is closed to simulate the load contingency

increased at bus 6. It is assumed that the wind speed is 14 m/s constantly.

As shown in Fig. 5.14, there are large voltage deviations in the three buses at

time t = 1 s. From t = 1.6 s, the two WTGs try to recover the voltage loss caused

by the load increasing. However, from t = 4.5 s, the voltages begin to decline,

especially for the voltage curve of bus 6. This illustrates that the existed control

strategy cannot recover the system from this fault condition. Finally, at t = 7.8 s,

the voltage is below 0.55 p.u. indicating the failure of the system.

0.40 p.u.

0.60 p.u.

0.80 p.u.

1.00 p.u.

0s 1s 2s 5s 6s 7s 8s 9s 10s3s 4s

0.50 p.u.

0.70 p.u.

0.90 p.u.

1.10 p.u.

Bus 6 Voltage

Bus 9 Voltage

Bus 12 Voltage

Figure 5.14: Voltage deviation caused by load switching

The proposed approach is employed for voltage stability in this scenario. After

the fault occurs, it takes 165 ms for the SVM algorithm to predict the voltage

disturbance and trigger the auxiliary MPC. Since the stable equilibrium point of the

distribution system is changed, the state space model is rebuilt, and the auxiliary

MPC is employed.

The WTGs auxiliary control variables computed by the MPC are illustrated. In

Fig. 5.15, the pitch angle curves have a trough at first to generate more active power
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Figure 5.15: Proposed control method for the auxiliary pitch angle variables

to compensate for the increased load caused by the load switching. Meanwhile, in

Fig. 5.16, besides the oscillation at the beginning, the excitation voltage curves of

WTGs also have crests at first to compensate for the reactive power insufficient.

Then both MPC controlled auxiliary pitch angle and excitation voltage variable

curves show fast damped responses, which indicates that the auxiliary controller

managed to quickly mitigate the voltage deviations.

0.0 p.u.

0.5 p.u.

0.8 p.u.

-0.4 p.u.
0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s

WTG 1 WTG 2
165ms

Figure 5.16: Proposed control method for the auxiliary excitation voltage variables

After the proposed method is employed, the voltage curves on selected buses are

illustrated in Fig. 5.17. The large voltage deviations are under control in 5 seconds

and the magnitude of deviation is reduced to less than 3% from t = 5.5 s.
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Figure 5.17: Voltage controlled by the proposed method after the load switching.

5.6 Numerical results of renewable integration on the

transmission system

The constraints of the parameters are shown in Table 5.27. All simulations are

executed using a computer with an Intel i7 3.0 GHz CPU and 12 GB RAM, and the

simulation software for the proposed approach is Matlab Simulink. The data length

for the SVM to classify normal and abnormal conditions is 100 ms; the computation

time for SVM is 20 ms; the computation time for MPC auxiliary control variables

is 35 ms; and 10 ms is for extra consumption such as system delay. The resulting

total consumption time is 165 ms.

Table 5.27: Constraints of the model predictive control variables
Lower Limits Variable Upper Limits

0.0 P.U. EAG1, EAG2, EAG3 2.0 P.U.

0.0 P.U. MA1,MA2,MA3 1.2 P.U.

0.0 P.U. EAW1, EAW2, EAW3 1.2 P.U.

0◦ βAW1, βAW2, βAW3 30◦

0.0 P.U. V1, V3, V6, V10 1.5 P.U.
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5.6.1 Model predictive control with LTI model

Wind Power Loss. In this study case, the switch Sw to generator G3 is open,

and the 1.5 MW TG does not connect to the hybrid power system. As Fig. 5.18

illustrates, it is assumed that there are two different profiles of wind speed for the

two WTGs, respectively. In order to create power margins for voltage regulation,

deloaded WPP operate at about 80% maximum available power.

At the beginning of the simulation, since the wind speed for WTG 1 is very low,

the output power of the wind farm is insufficient. As Fig. 5.19 illustrates, there are

the voltage curves on selected buses without the proposed auxiliary MPC approach.

The blue curve illustrates the voltage of bus 6, which is connected to the WPP, is

lower than voltages on other buses. Then, during time period 4 s to 7 s, the wind

power is further decreased. As a result, in Fig. 5.19, the decrease in output power

of the WPP causes the voltage decline of the power system. And at 7 s, the voltage

is below 0.4 p.u., thus indicating the failure of the power system.

5.0 m/s

7.0 m/s

9.0 m/s

11.0 m/s

13.0 m/s

15.0 m/s

WTG 1 WTG 2

0s 1s 2s 5s 6s 7s 8s 9s 10s3s 4s

Figure 5.18: Wind speed of the wind turbines

In order to remedy the situation presented in Fig. 5.19, the proposed approach

is employed. Since at the beginning, the low wind speed causes the voltage at bus

6 lower than others, the auxiliary MPC is triggered immediately to compensate

for voltage reduction caused by the decreasing wind speed. The TG mechanical
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Figure 5.19: Voltage on bus 2, 3, 5, and 10

power increases to compensate the lack of generation as demonstrated in Fig. 5.20.

Similarly the excitation voltage increases to provide reactive power support during

the under voltage condition as shown in Fig. 5.21. Since TG 1 is located the closest

to the IEEE 13-bus distribution grid, it has larger impact to compensate for the

distribution grid output power drop. So the additional output of the TG 1 shows

larger increase in mechanical and excitation voltage control variables. From t =

1.3 s to t = 9.0 s, there is an increase in the mechanical power and excitation to

compensate for the power loss of the WPP.

0.00 p.u.

0.05 p.u.

0.10 p.u.

0.15 p.u. Generator 1 Generator 2

0s 1s 2s 5s 6s 7s 8s 9s 10s3s 4s

Figure 5.20: Proposed method for the auxiliary mechanical power variables

The auxiliary MPC controlled pitch angle and excitation voltage variables for

the WTGs are illustrated as shown. In Fig. 5.22, the pitch angle curves of the two
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Figure 5.21: Proposed method for the auxiliary excitation voltage variables

WTGs change to increase the output active power. For WTG 1, the wind speed

is low at the beginning, the MPC controlled pitch angle is low to generate more

active power. For WTG 2, from t = 4 s, the MPC controlled pitch angles decreases

acutely to generate more active power when the wind speed declines at the same

time. In Fig. 5.23, there is a crest in control variables from t = 1.3 s to t = 9.0 s, the

MPC controlled excitation voltage variables also increases to generate more reactive

power and compensate for the voltage drop.
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Figure 5.22: Proposed method for the auxiliary pitch angle variables

After the proposed method is employed, the improvement to bus voltages are

shown in Fig. 5.24, and the voltage collapse is avoided. Since the proposed method is

starting as the beginning to compensate the wind power loss, the voltage of the four
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Figure 5.23: Proposed method for the auxiliary excitation voltage variables

buses is controlled in the range from 0.97 p.u. to 1.03 p.u.. As shown in Fig. 5.9, from

t = 4 s to 7 s, the wind power dramatically deceases, the compensated voltages also

decline lightly. But they are controlled in the range from 0.95 p.u. to 1.02 p.u. and

beginning to coverage gradually, which is much better than the voltages collapsed

in Fig. 5.10 without the proposed control strategy. Finally, the voltage curves of

the four selected buses are more consistent with respect to each others, and the

amplitude of the transient voltage dips are less than 2%.
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0.96 p.u.

0.98 p.u.

1.00 p.u.
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Figure 5.24: Voltage controlled by the proposed method for wind power loss
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5.6.2 Model predictive control with LTV model

Generator Loss. As Fig. 4.2 illustrates, after the switch Sw is closed, a 1.5

MW traditional generator is connected at bus 14 and the power system operates in

normal condition. At t = 1 s, a fault occurs and the switch is opened to simulate

the loss of generation fault. It is assumed that the wind speed is 14 m/s constantly.

As shown in Fig. 5.25, there are large voltage oscillations in the four buses at

the beginning. From t = 1.3 s, the TGs and WTGs try to recover the voltage loss

caused by the generator loss. But from t = 4 s, the voltage becomes declining,

especially for the green curve of bus 1, which is the nearest bus to the fault. This

illustrates the existed control strategy cannot recover this fault condition. Finally,

at t = 7 s, the voltage is below 0.5 p.u., and the simulation stops.
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Figure 5.25: Voltage oscillation caused by generator loss

The proposed approach is employed for this scenario. After the fault occurs, it

takes 165 ms for the SVM algorithm to predict that the voltage will be unstable and

trigger the auxiliary MPC. Since the stable equilibrium point of the power system

is changed, the state space model is rebuilt, and the auxiliary MPC is employed.

As illustrated below, the MPC computed TG auxiliary mechanical power vari-

ables have crests first to compensate for active power loss caused by the generator

loss. In Fig.5.27, the excitation voltage variables have a lot of oscillations at the
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beginning to compensate for the voltage oscillation and also produce more reactive

power to compensate for the reactive power loss. Because TG 1 is located closer

with the fault than TG 2, the blue curves, which represent the mechanical power

and excitation voltage of TG 1, have larger crests and troughs.

0s 1s 2s 3s 4s 5s 6s 7s 8s 9s 10s

0.0 p.u.

0.1 p.u.

0.2 p.u.

-0.1 p.u.

Generator 1 Generator 2
165ms

Figure 5.26: Proposed method for the auxiliary mechanical variables
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-1.0 p.u.

2.0 p.u. Generator 1 Generator 2

165ms

Figure 5.27: Proposed method for the auxiliary excitation voltage variables

The MPC computed auxiliary control variables of WTGs are illustrated as

shown. In Fig.5.28, the pitch angle curves have trough at first to generate more

active power to compensate for the active power loss caused by the generator loss.

Meanwhile, in Fig.5.29, besides the oscillation at the beginning, the excitation

voltage curves of WTGs also have crest first to compensate for the reactive power

loss. Then both MPC controlled auxiliary pitch angle and excitation voltage vari-
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Figure 5.28: Proposed method for the auxiliary pitch angle variables
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Figure 5.29: Proposed method for the auxiliary excitation voltage variables

able curves show to have fast damped responses, which indicates that the auxiliary

controller managed to quickly mitigate the voltage oscillations.

After the proposed method is employed, the voltage curves on selected buses are

illustrated as in Fig. 5.30. The large voltage oscillations are controlled in 5 seconds

and the magnitude of oscillation is reduced to less than 3% from t = 6 s.

In sum, compared to traditional control strategies, distributed wind turbines

act as an auxiliary control method to enhance voltage stability of the distribution

system. In our proposed control strategy, the SVM classifier provides prediction of

voltage stability. From our investigation, the impact of a reduced number of installed

PMUs does not affect the accuracy and effectiveness of our proposed method. It
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Figure 5.30: Voltage controlled by the proposed method for generator loss

is expected that our proposed auxiliary control strategy can be easily adapted to

cooperate with existing voltage control methods and devices such as integrated

volt/var control (IVVC) and voltage regulators.

5.7 Numerical results of statistical scheduling of eco-

nomic dispatch

The numerical results of GA based optimization of the power operating cost

are demonstrated. The proposed approach is applied to the IEEE 24-bus RTS,

which is a hybrid power system and contains wind turbine generators. All the

unit price data for the system, including the conventional energy and the renewable

energy are from [33]. Sufficient historic data for training this model are provided

by the National Renewable Energy Laboratory (NREL). The load demand range is

assumed between 600 MWh to 2800 MWh, which is based on the rated power of

each generator. In [135], the average worldwide wind penetration is around 17% in

2013. In this paper,it is assumed three levels in this paper for high wind energy

penetration, 30%, 33.3% and 40%.

The objective function contain 28 variables, 14 for price per unit, 6 for conven-

tional generating output power, 4 for wind turbine generator output power in spot
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market and 4 for wind turbine generator output power in reserve market. The effect

of the uncertainty of the wind energy prediction on the power system operation will

be studied on the IEEE 24-bus RTS model. Three case studies are conducted on

this system.

In Case 1, results on the comparison of different wind penetration ratios are

demonstrated. In Case 2, results are provided on three different α’s in the chance

constraint of (4.5.11). In the end, Monte Carlo simulation is conducted and used to

test the reliability of the system.

5.7.1 Results on different wind energy penetrations ratios

A comparison of the effects of different wind energy penetration ratios is demon-

strated in this section. The numerical study scenarios include the total operating

cost of the power generation for three different wind penetration ratios with in-

creasing load demand. In Fig. 5.31, with chance constraint probability α = 95%,

the three different colours denote the results corresponding to three different wind

penetration ratios. As we can see, the system with wind energy penetration in 40%

provides the minimal cost with the same amount of generated power. It can be seen

from Fig. 5.31 that, a lower wind energy penetration ratio results in higher power

operating costs.

5.7.2 Results on different chance constraint probability

In Case 2, the wind energy penetration ratio is fixed as 33.3%, the chance con-

straint probability, α in (4.5.11), is defined as 90%, 95% and 99.73%, respectively.

As shown in Fig. 5.32, the operating costs corresponding to the three different prob-

abilities increase gradually with increasing load demand. As we can see in Fig. 5.32

that the operating cost with the probability of 99.73% is lower than others. The

highest cost is obtained with the probability of 90%. This illustrates that the total
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Figure 5.31: The total power operating costs of different wind energy penetrations
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Figure 5.32: The total power operating cost with different chance constraints

power operating cost will change if the probability changes.

In detail, the total cost increases with decreasing chance constraint probability.

This is due to that a larger probability places a stricter constraint that the total cost

of the renewable energy needs to be lower or equal to the demand price b in (4.5.11).

On the contrary, the operating cost increases if we define a smaller probability for
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the system, which means a weaker constraint is used for restricting the system. In

sum, the proposed method provides an a robust and effective way to control the

hybrid system in both transmission level and distribution level.
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Chapter 6

Conclusion and future work

6.1 Conclusion

In the first decade of the twenty-one century, the world experienced the high

speed increase in demand of electrical power and renewable energy penetration. The

wide distributed synchrophasor sensors in the modern power systems can provide

abundant data and information to analyze and control the hybrid power system.

This provide a new method for wide area monitoring and renewable energy integra-

tion.

The wide area monitoring of power systems is the first step for renewable energy

integration. In this paper, several approach are proposed for wide area monitoring.

With the data collected by the wide distributed synchrophasor sensors, a time-

frequency analysis approach is proposed for different types of faults in SGs. Wavelet

analysis is used to extract signal edge features, then detect the fault. By clustering

the signal edge features, the fault can be located in SG. This approach provides an

effective way to detect and locate the fault in a short time.

An effective voltage security assessment is proposed to identify the locations

that will have the greatest impact on the voltage at the wind power plants point of
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interconnection. Compared with the dynamic simulation, the proposed approach is

more effective and requires fewer computations. With the present result, the pro-

posed approach is conservative. But combined with the basic dynamic information,

the proposed approach can be used to assess the voltage security for a wind power

plant in power systems. The nature hazards, such as typhoon and earthquake, will

change the parameters of power systems. If the parameters of power system are

changed, the proposed approach provides a robust and feasible way to generate the

critical bus set. The proposed approach enhances the voltage security and system

resilience of power systems.

A novel data-driven method is proposed and studied which provides a multifunc-

tional approach for fault detection, identification and location in SG systems. In

addition, considering the economic issue of the proposed approach, the optimization

placement of the distributed synchrophasor sensors is studied to reduce the number

of the sensors without affecting accuracy and effectiveness of the proposed approach

in the SGs. The detection rates and identification rates are also compared with

other power system fault diagnosis methods such as ANN and SVM. The proposed

method achieves the highest detection rates and identification rates for scenarios

with different SNRs and reduced number of the distributed synchrophasor sensors.

This indicates the robustness and implementation feasibility of the proposed ap-

proach considering the equipment and installation costs in real-world applications.

Combining the SG topology information with the clustered features of voltage sig-

nals, the fault position can be inferred and located. Compared with the methods in

[45, 99, 52, 53], the fault contour map proposed in this paper is very intuitive and

the impacted areas can be located immediately after the fault happens.

It is our expectation that the proposed approach is able to provide prompt power

system security assessment and fault diagnosis. It also helps to shorten response

time for deciding the most effective protection actions such as switching generators,
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power system islanding and load shedding, etc. Based on the step of wide area

power system monitoring, a novel auxiliary coordinated voltage control approach is

proposed to improve the stability, reliability and efficiency of the renewable energy.

Compared with traditional control strategies, this proposed approach provides

an effective way on transient voltage control for the power system with high wind

penetration. In the proposed approach, the SVM classifier provides prediction of

transient voltage stability. From our investigation the impact of reduced number of

installed PMUs does not cause reduced accuracy and effectiveness of our proposed

concept.

In addition to TG control loop and WTG control loop, a MIMO auxiliary coor-

dinated control strategy based on the MPC algorithm is employed. This controller

is dormant during normal operation, however, when there is a fault or other distur-

bances, the SVM classifier will trigger this controller action. Since there are many

factors that can affect voltage stability in the system, the LTI and LTV system

models are used to control the power system in different scenarios. In the numerical

study, the proposed control strategy is demonstrated to be highly effective to control

the voltage stability for the power system with high wind penetration on both the

distribution system and the transmission system.

What is more, considering the high renewable energy penetration, a stochastic

approach in joint scheduling economic dispatch has been presented. Compared to

the Gaussian distribution, the Weibull distribution has a better performance in wind

speed fitting. Based on the Weibull distribution, a probability chance constrain is

derived into a feasible convex constrain. The valid optimization results demonstrate

its effectiveness and efficiency.

With anticipated development of future power system, it can be predicted that

small-scale wind turbine generators and PV panels will be pervasively located in

distribution systems. Different from transmission systems, distribution systems are
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unbalanced and more complex such as one phase, two phase and three phase power

system circuitry, which brings a challenge to power flow calculation. A graph theory

based iterative approach is presented to analyze the distribution system first and

then calculate the power flow.

In real-world applications, the power system is much more complicated than

the test system and contains a variety of renewable energy sources such as photo-

voltaic, geothermal, etc. Therefore, we expect that our proposed approach to be a

cornerstone for other applications that includes large scale renewable power system

integration.

6.2 Future work

In the future work, the topic can be developed in details as follows:

6.2.1 Wide area monitoring

• Different types of fault, such as natural and man-made hazards, will be studied

on fault detection, identification and location.

• In this paper, one fault occurred at a time is studied, multiple faults or cas-

cading faults will be studied in the future.

• In this paper, the simulations are presented as the demonstrations of the pre-

sented monitoring approaches. In real application, more complex SG will be

studied, which contains micro grid, high-voltage direct current (HVDC), etc.

6.2.2 Renewable energy integration control

• Besides voltage stability, power system stability contains frequency stability,

phase angle stability, etc. In the next step, these areas will be modelled and

researched.
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• Because the distributed renewable energy can be located in many places of

the power system, their parallel cooperation will be studied in the next step.

• In real application, the renewable energy contains solar energy, geothermal

energy, etc. These issue will be taken into the consideration for future research.

6.2.3 Resilience of SG with renewable energy

• The areas will be studied that the voltage, frequency and phase angle stability

of SG with different types of renewable energy.

• The natural and man-made hazards can change the topology of SG. The sta-

bility of SG under time-variant topology scenario will be a changeling topic

for next step study.

• Considering the economic issue, how to manage the renewable energy, conven-

tional energy, and power flow is a interesting topic for next step study.

6.2.4 Stochastic scheduling of economic dispatch

• Optimizing the total power cost for on emergency event, such as natural and

man-made hazards.

• For real-world applications, various types of wind turbine generators should

be considered to establish accuracy correlative function between wind speed

and electrical power.

• IEEE 24-bus RTS is used in this paper to simulate and detect the results of the

proposed model, more complex models will be chosen to validate the proposed

approach in a large-scale power system.
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6.2.5 Power flow of distribution system

• For real-world applications, the topology and system configuration are more

complex, which brings higher requirements to the algorithm.

• The 12-bus distribution system is used as a test bench, however, more complex

models will be chosen to validate the proposed approach in a large-scale power

system.

6.3 Publications

6.3.1 Journal articles

1. H. Jiang, J.J. Zhang, D.W. Gao, and Z. Wu, “Fault Detection, Identica-

tion and Localization in Smart Grid Based on Data-Driven Computational

Methods,” IEEE Transactions on Smart Grid, 2014, accepted.

2. H. Jiang, Y. Zhang, J.J. Zhang, D.W. Gao, and E. Muljadi, “Synchropha-

sor Based Auxiliary Controller to Enhance Voltage Stability of Distribution

System with a High Penetration Renewable Energy,” IEEE Transactions on

Smart Grid Special Issue on Monitoring, Visualizaton, and State Estimation

for Distribution Systems, 2014, accepted.

3. Wei Shi, Huang Lei, Jian Xu, Yi Gu, H. Jiang, J.J. Zhang, “Fault Analysis

in Big Data Situation with Optimal PMU Placement”, Proceedings of the

Chinese Society for Electrical Engineering, 2014, accepted.

4. Mahesh K. Banavar, J.J. Zhang, H. Jiang, Chaitali Chakrabarti, Antonia

Papandreou-Suppappola, Andreas Spanias, Cihan Tepedelenlioglu, ”Review

of Sensor Signal and Information Processing Algorithms”, Digital Signal Pro-

cessing, 2013, accepted.
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5. M. Cui, J. Zhang, AR. Florita, Bri. Hodge, H. Jiang, D. Ke and Y. Sun,

Wind Power Ramp Event Detection Based on an Optimized Swinging Door

Algorithm, IEEE Transactions on Power System, in preparation.

6.3.2 Conference proceedings papers

1. H. Jiang, Y. Zhang, J. Zhang, E. Muljadi, PMU-Aided Voltage Security

Assessment for a Wind Power Plant, IEEE Power and energy Society General

Meeting, 2015, submitted.

2. Y. Gu, H. Jiang, Y. Zhang and D.W. Gao, “Statistical Joint Scheduling of

Economic Dispatch and Energy Reserves of Hybrid Power Systems with High

Renewable Energy Penetration,” Asilomar Conference on Signals, Systems,

and Computers, 2014, accepted.

3. H. Jiang, L. Huang, J.J. Zhang, Y. Zhang and D.W. Gao, “ Spatial-Temporal

Characterization of Synchrophasor Measurement Systems — A Big Data Ap-

proach for Smart Grid System Situational Awareness,” Asilomar Conference

on Signals, Systems, and Computers, 2014, accepted.

4. H. Jiang, Y. Zhang, J.J. Zhang, D.W. Gao, and E. Muljadi, “Synchrophasor

Based Auxiliary Controller to Enhance Power System Transient Voltage Sta-

bility in a High Penetration Renewable Energy Scenario,” IEEE Symposium

on Power Electronics and Machines for Wind and Water Applications 2014,

accepted.

5. H. Jiang, J.J. Zhang, A. Hebb, M.H. Mahoor “Time-frequency Analysis of

Brain Electrical Signals for Behaviour Recognition in Patients with Parkin-

son’s Disease”, Asilomar Conference on Signals, Systems, and Computers,

2013.
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