4 research outputs found

    Multisensor Fault Identification Scheme Based on Decentralized Sliding Mode Observers Applied to Reconfigurable Manipulators

    Get PDF
    This paper concerns with a fault identification scheme in a class of nonlinear interconnected systems. The decentralized sliding mode observer is recruited for the investigation of position sensor fault or velocity sensor fault. First, a decentralized neural network controller is proposed for the system under fault-free state. The diffeomorphism theory is utilized to construct a nonlinear transformation for subsystem structure. A simple filter is implemented to convert the sensor fault into pseudo-actuator fault scenario. The decentralized sliding mode observer is then presented for multisensor fault identification of reconfigurable manipulators based on Lyapunov stable theory. Finally, two 2-DOF reconfigurable manipulators with different configurations are employed to verify the effectiveness of the proposed scheme in numerical simulation. The results demonstrate that one joint’s fault does not affect other joints and the sensor fault can be identified precisely by the proposed decentralized sliding mode observer

    FDMG: Fault detection method by using genetic algorithm in clustered wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) consist of a large number of sensor nodes which are capable of sensing different environmental phenomena and sending the collected data to the base station or Sink. Since sensor nodes are made of cheap components and are deployed in remote and uncontrolled environments, they are prone to failure; thus, maintaining a network with its proper functions even when undesired events occur is necessary which is called fault tolerance. Hence, fault management is essential in these networks. In this paper, a new method has been proposed with particular attention to fault tolerance and fault detection in WSN. The performance of the proposed method was simulated in MATLAB. The proposed method was based on majority vote which can detect permanently faulty sensor nodes with high detection. Accuracy and low false alarm rate were excluded them from the network. To investigate the efficiency of the new method, the researchers compared it with Chen, Lee, and hybrid algorithms. Simulation results indicated that the novel proposed method has better performance in parameters such as detection accuracy (DA) and a false alarm rate (FAR) even with a large set of faulty sensor nodes

    Fault diagnosis method of polymerization kettle equipment based on rough sets and BP neural network

    Get PDF
    Polyvinyl chloride (PVC) polymerizing production process is a typical complex controlled object, with complexity features, such as nonlinear, multivariable, strong coupling, and large time-delay. Aiming at the real-time fault diagnosis and optimized monitoring requirements of the large-scale key polymerization equipment of PVC production process, a real-time fault diagnosis strategy is proposed based on rough sets theory with the improved discernibility matrix and BP neural networks. The improved discernibility matrix is adopted to reduct the attributes of rough sets in order to decrease the input dimensionality of fault characteristics effectively. Levenberg-Marquardt BP neural network is trained to diagnose the polymerize faults according to the reducted decision table, which realizes the nonlinear mapping from fault symptom set to polymerize fault set. Simulation experiments are carried out combining with the industry history datum to show the effectiveness of the proposed rough set neural networks fault diagnosis method. The proposed strategy greatly increased the accuracy rate and efficiency of the polymerization fault diagnosis system

    Study on a novel fault diagnosis method based on integrating EMD, fuzzy entropy, improved PSO and SVM

    Get PDF
    In order to effectively improve the fault diagnosis accuracy of motor bearing, a new fault diagnosis method based on integrating empirical mode decomposition(EMD), fuzzy entropy, improved particle swarm optimization(PSO) algorithm and support vector machine (SVM) is proposed in this paper. In the proposed fault diagnosis method, the EMD method is used to decompose vibration signals into a series of basic intrinsic mode functions (IMFs). Then the fuzzy entropy is used to effectively extract the features of vibration signal, which are regarded as input vectors of SVM. The dynamic adjustment strategy of arctangent function of learning factor, decreasing inertia weight of function and adaptive mutation strategy of particles are used to improve the basic PSO algorithm in order to avoid premature convergence, escape from falling into the local optimal value and improve the optimization performance. And the improved PSO algorithms are selected to optimize the parameters of SVM in order to improve the generalization ability and the classification accuracy. And then a new fault diagnosis method is obtained. Finally, the actual vibration signals of motor bearing are selected to verify the effectiveness of the proposed fault diagnosis method. The experiment results show that the improved PSO algorithm can effectively obtain the optimal combination values of parameters of SVM, and the proposed fault diagnosis method can accurately and quickly diagnose the faults of motor bearing with the higher reliability. And it provides a new idea based on making full use of the advantages of each method for studying motor fault diagnosis
    corecore