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This paper concerns with a fault identification scheme in a class of nonlinear interconnected systems. The decentralized sliding
mode observer is recruited for the investigation of position sensor fault or velocity sensor fault. First, a decentralized neural
network controller is proposed for the system under fault-free state. The diffeomorphism theory is utilized to construct a
nonlinear transformation for subsystem structure. A simple filter is implemented to convert the sensor fault into pseudo-actuator
fault scenario. The decentralized sliding mode observer is then presented for multisensor fault identification of reconfigurable
manipulators based on Lyapunov stable theory. Finally, two 2-DOF reconfigurable manipulators with different configurations are
employed to verify the effectiveness of the proposed scheme in numerical simulation. The results demonstrate that one joint’s fault
does not affect other joints and the sensor fault can be identified precisely by the proposed decentralized sliding mode observer.

1. Introduction

Reconfigurable manipulators as a kind of nonlinear intercon-
nected systems are widely investigated in recent years due to
their potential applications, that is, space exploration, smart
manufacturing, high risk operations, battle field, and so forth.
However, faults will inevitably occur in the actuators, sensors,
and other units after long time workings. Direct maintenance
is difficult aswell. A developing and undetected faultmay lead
to an abortion in the entire workspace. What is worse, this
failure is sometimes even harmful to humans; thus higher
safety and reliability are demanded. Hence, fault diagnosis
and tolerant control have become an urgent problem.

In general, three strategies were carried out to achieve
the aim at fault detection and identification. Based on model
analysis schemes, Alwi et al. [1] proposed sliding mode
observers to overcome the limitation that the linear observer
schemes cannot be employed for sensor fault reconstruction.
da Silva et al. [2] presented an expert system that uses a com-
bination of object-oriented modeling, rules, and semantic
networks to deal with the most common sensor faults.
Du et al. [3] obtained the fault information by estimating

the outputs of the actuators and comparing them with the
corresponding prescribed control inputs and then devel-
oped a fault-tolerant control by choosing a safe-park point.
Brambilla et al. [4] adopted a second order sliding mode
approach to design the input laws of the observers to establish
satisfactory stability properties of the observation error and
reduce the chattering effect. Filasová and Krokavec [5] gave
the solution of observer gain by using LMI and modified
the optimal estimator parameters in the standard estimator
structure. Based on the information processing, Zhang et al.
[6] presented a fault feature extraction method combined
wavelet analysis with neural network. Subrahmanya and Shin
[7] considered three kinds of states in a generic systemmodel
no matter whether the states could be measured or not and
proposed a framework based on the dynamic neural networks
for data-based process monitoring, fault detection, and diag-
nostics of nonlinear systems with partial state measurement.
van Eykeren et al. [8] introduced a form of analytical
redundancy by using an adaptive extended Kalman filter
to improve the fault detection performance and compared
the state reconstruction with the measurements. Heredia
and Ollero [9] accomplished a sensor fault detection system
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by evaluating any significant change, which was estimated
by using an observer. Mhaskar et al. [10] proposed a fault
detection and isolation filter, then redesigned controller
for MIMO nonlinear system. Another strategy is based on
the knowledge discovery. Zhang et al. [11] made the fault
isolation decision for sensor bias fault based on the adaptive
threshold, which is obtained by the corresponding isolation
estimators. Heredia et al. [12] considered five different types
of sensor failures, but they cannot be distinguished from the
noise if errors are relatively too small. Mehranbod et al.
[13] presented Bayesian belief network based sensor fault
detection and identification scheme. Izumikawa et al. [14]
proposed control system that estimates a strain gauge sensor
signal based on the reaction force observer and detects the
fault by monitoring the estimation error. Chenglin et al. [15]
investigated a sensor fault diagnosis by chaos particle swarm
optimization algorithm and support vector machine.

This paper conducts a novel multisensor fault detection
protocol based on decentralized sliding mode observer for
the nonlinear interconnected system. Under the fault-free
state, decentralized neural networks were utilized to approxi-
mate or compensate the unknown term and interconnection
term among the subsystems. Nonlinear transformation is
constructed by diffeomorphism theory, then a simple filter
is brought out to transform the sensor fault into pseudo-
actuator fault scenario, and a decentralized sliding mode
observer is derived based on Lyapunov stability theory so
as to identify the multisensor fault function precisely in real
time. Finally, the simulation results of two 2-DOF reconfig-
urable manipulators with different configurations are pre-
sented to demonstrate the effectiveness of the proposed
scheme.The approach of this paper fits into the framework of
decentralized control, which is also the main contribution.
The same control law and parameters are implemented to
all the subsystems. The focus of this paper is on the issue of
the decentralized control algorithm which is independent of
the fault information and other subsystems. In other words,
a joint sensor failure will not affect others’ under fault-free
state.

2. Problem Description

The general fault-free dynamic model of nonlinear intercon-
nected subsystem 𝑆

𝑖
can be presented by the following state

equation:

𝑆
𝑖
:
{

{

{

�̇�
𝑖
= 𝐴
𝑖
𝑥
𝑖
+ 𝐵
𝑖
[𝑓
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
) + 𝑔
𝑖
(𝑞
𝑖
) 𝑢
𝑖
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𝑖
(𝑞, ̇𝑞, ̈𝑞)]

𝑦
𝑖
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𝑖
𝑥
𝑖
,

(1)
where𝑥

𝑖
is the state vector of subsystem 𝑆

𝑖
, and𝑦

𝑖
is the output

of subsystem 𝑆
𝑖
.

For the subsystemwithmultisensor fault (position sensor
and velocity sensor), the faulty dynamic model can be ex-
pressed as

𝑆
𝑖𝑓
: {
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,

(2)

where the initial 𝑥
𝑖0

= 𝑥
𝑖
(0), the sensor fault distribution

matrix is 𝐷
𝑖
and the fault function 𝑓

𝑠𝑖
that expressed as 𝐷

𝑖
=

[ 1 0
0 1

], 𝑓
𝑠𝑖
= [
𝑓
𝑠𝑖1

𝑓
𝑠𝑖2

], and ‖𝑓
𝑠𝑖
(𝑡)‖ ≤ 𝜌

𝑖
(𝑡), where 𝜌

𝑖
(𝑡) is a contin-

uous function.

Assumption 1. 𝑓
𝑠𝑖
(𝑡) is an unknown function under the satis-

faction of Table 1 and defined when 𝑡 ∈ 𝑅
+.

The control object is to design a decentralized neural net-
work controller for (1) to make the outputs of overall system
follow desired trajectories, then design decentralized sliding
mode observer to detect whether the whole system in failure
or not, and identify the sensor fault when it occurs.

3. Controller and Observer Design

At first, introduce the concept of Lie algebra and transforms
the joint sensor fault into pseudo-actuator fault scenario [16].
Hence, for the subsystem (1),
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And in general, the equations above can be expressed as
�̇�
𝑖
= 𝐴
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3.1. Decentralized Neural Network Controller Design. Neural
network could be utilized to approximate any nonlinear func-
tion in any accuracy with parameters modification. In this
section, decentralized neural networks controller is designed
for (1) under fault-free state.
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(5)

where the𝑊
𝑖𝑓
and𝑊

𝑖𝑔
are the ideal neural network weights,

Φ
𝑖⋅
(⋅) is the neural network basis function, and 𝜀
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the neural network approximation errors; 𝜀
1
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2
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Figure 1: Tracking performance of configuration 𝑎.

Table 1: Sensor fault type.

Fault type 𝑓
𝑠𝑖1

𝑓
𝑠𝑖2

Fault-free 0 0
Position sensor fault ̸= 0 0
Velocity sensor fault 0 ̸= 0
Position and velocity sensor fault ̸= 0 ̸= 0

Define the estimation errors as �̃�
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(7)

where the neural output error with Gaussian activation Φ(⋅)

is given by
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Next, the neural network expressed as (9) is proposed to
compensate the interconnection term
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Assumption 3. The interconnection term ℎ
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𝑇
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is defined.
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Figure 2: Observe errors of multisensor fault for configuration 𝑎.

Define approximation error

𝑤
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= 𝑊
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The decentralized controller is designed as
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With the adaptive update laws as
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(
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where Γ
𝑖𝑓
, Γ
𝑖𝑔
, and Γ

𝑖𝑝
are positive constants.

3.2. Decentralized SlidingModeObserver Design. This section
will give the detail design processing of decentralized sliding
mode observer for nonlinear interconnected system to iden-
tify the precise fault functions.

Introduce a simple filter as
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𝑧
𝑖
+ 𝐵
𝑖
[𝑓
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
) + 𝑔
𝑖
(𝑞
𝑖
) 𝑢
𝑖
+ ℎ
𝑖
(𝑞, ̇𝑞, ̈𝑞)] ,

�̇�
𝑎𝑖
= 𝐴
𝑎𝑖
𝑧
𝑎𝑖
+ 𝐵
𝑎𝑖
(𝐶
𝑖
𝑥
𝑖
+ 𝐷
𝑖
𝑓
𝑠𝑖
) ,

𝑦
𝑎
= 𝑧
𝑎𝑖
.

(16)
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Figure 3: Multisensor fault identification of configuration 𝑎.

According to (16), the decentralized slidingmode observ-
er should be designed as

𝑆
𝑖𝑓
:

{{{{{{{{

{{{{{{{{

{

�̂�
𝑖
= 𝐴
𝑖
�̂�
𝑖

+ 𝐵
𝑖
[𝑓
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
) + 𝑔
𝑖
(𝑞
𝑖
) 𝑢
𝑖
+ 𝑝
𝑖
(

𝑒
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖


, �̂�
𝑖𝑝
)] ,

�̂�
𝑎𝑖
= 𝐴
𝑎𝑖
𝑧
𝑎𝑖
+ 𝐵
𝑎𝑖
(𝐶
𝑖
𝑥
𝑖
+ V
𝑖
) ,

𝑦
𝑎
= 𝑧
𝑎𝑖
,

(17)

where

V
𝑖
= −𝑘
𝑖

𝑦
𝑎
− 𝑦
𝑎

𝑦𝑎 − 𝑦
𝑎



. (18)

𝑓
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
), 𝑔
𝑖
(𝑞
𝑖
), and 𝑝

𝑖
(|𝑒
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
|, �̂�
𝑖𝑝
) should be estimated by

neural networks.

3.3. Stability Analysis. Let

𝑒
𝑖
= 𝑧
𝑖
− �̂�
𝑖
,

𝑒
𝑎𝑖
= 𝑧
𝑎𝑖
− �̂�
𝑎𝑖
.

(19)

Thus

̇𝑒
𝑖
= �̇�
𝑖
− ̇̂𝑧
𝑖
,

̇𝑒
𝑎𝑖
= �̇�
𝑎𝑖
− ̇̂𝑧
𝑎𝑖
.

(20)

The error state space function can be expressed as

̇𝑒
𝑖
= 𝐴
𝑖
𝑒
𝑖
+ 𝐵
𝑖
[𝑓
𝑖
− 𝑓
𝑖
+ (𝑔
𝑖
− 𝑔
𝑖
) 𝑢
𝑖
+ ℎ
𝑖
− 𝑝
𝑖
] , (21)

̇𝑒
𝑎𝑖
= 𝐴
𝑎𝑖
𝑒
𝑎𝑖
+ 𝐵
𝑎𝑖
(𝐶
𝑖
𝑒
𝑖
+ 𝐷
𝑖
𝑓
𝑠𝑖
− V
𝑖
) . (22)

Choose the Lyapunov candidate as

𝑉
𝑖
= 𝑒
𝑇

𝑖
𝑃
𝑖
𝑒
𝑖
+ �̃�
𝑇

𝑖𝑓
Γ
−1

𝑖𝑓
�̃�
𝑖𝑓

+ �̃�
𝑇

𝑖𝑔
Γ
−1

𝑖𝑔
�̃�
𝑖𝑔
+ �̃�
𝑇

𝑖𝑝
Γ
−1

𝑖𝑝
�̃�
𝑖𝑝
.

(23)

By simple computing, its time derivative is

�̇�
𝑖
= ̇𝑒
𝑇

𝑖
𝑃
𝑖
𝑒
𝑖
+ 𝑒
𝑇

𝑖
𝑃
𝑖
̇𝑒
𝑖
− �̃�
𝑇

𝑖𝑓
Γ
−1

𝑖𝑓

̇̂
𝑊
𝑖𝑓

− �̃�
𝑇

𝑖𝑔
Γ
−1

𝑖𝑔

̇̂
𝑊
𝑖𝑔
− �̃�
𝑇

𝑖𝑝
Γ
−1

𝑖𝑝

̇̂
𝑊
𝑖𝑝

≤ 𝑒
𝑇

𝑖
(𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
) 𝑒
𝑖

+
1

𝜀
𝑖

(𝑒
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
)
𝑇

𝑒
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝜀
2

𝑖
𝑤
2

𝑖
.

(24)
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Figure 4: Tracking performance of configuration 𝑏.

Assumption 4. The Euclidean norm of estimation error satis-
fies ‖𝑤

𝑖
‖ ≤ 𝐿
𝑖
(𝑢
𝑖
)‖𝑒
𝑖
‖.

According to Young’s inequality and Racatti function
below

𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
+

1

𝜀
𝑖

𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+ 𝜀
2

𝑖
𝐿
2

𝑖
(𝑢
𝑖
) < 0 (25)

the Lyapunov candidate is nonpositive definite, where 𝜀
𝑖
is a

positive constant

�̇�
𝑖
≤ 𝑒
𝑇

𝑖
(𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖
) 𝑒
𝑖

+
1

𝜀
𝑖

(𝑒
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
)
𝑇

𝑒
𝑇

𝑖
𝑃
𝑖
𝐵
𝑖
+ 𝜀
2

𝑖
𝐿
2

𝑖
(𝑢
𝑖
) 𝑒
2

𝑖

= 𝑒
𝑇

𝑖
(𝐴
𝑇

𝑖
𝑃
𝑖
+ 𝑃
𝑖
𝐴
𝑖

+
1

𝜀
𝑖

𝑃
𝑖
𝐵
𝑖
𝐵
𝑇

𝑖
𝑃
𝑖
+𝜀
2

𝑖
𝐿
2

𝑖
(𝑢
𝑖
)) 𝑒
𝑖
≤ 0.

(26)

Assumption 5. The subsystem observe error 𝑒
𝑖
is bounded as

sup{‖𝑒
𝑖
‖} ≤ 𝑏

𝑖
.

Define the sliding mode surface as

𝑠
𝑖
= {col (𝑒

𝑖
, 𝑒
𝑎𝑖
) | 𝑒
𝑎𝑖
= 0} . (27)

And choose Lyapunov candidate for the sliding mode
surface

𝑉
𝑎𝑖
= 𝑒
𝑇

𝑎𝑖
𝑒
𝑎𝑖
. (28)

Hence
�̇�
𝑎𝑖
= ̇𝑒
𝑇

𝑎𝑖
𝑒
𝑎𝑖
+ 𝑒
𝑇

𝑎𝑖
̇𝑒
𝑎𝑖

= −2
𝑒𝑎𝑖



2
+ 2𝑒
𝑇

𝑎𝑖
(𝐶
𝑖
𝑒
𝑖
+ 𝐷
𝑖
𝑓
𝑠𝑖
− V
𝑖
)

≤ −2
𝑒𝑎𝑖



2
+ 2

𝑒𝑎𝑖
 𝑏𝑖 + 2

𝑒𝑎𝑖
 𝜌𝑖 − 2

𝑒𝑎𝑖
 𝑘𝑖

= −2
𝑒𝑎𝑖



2
+ 2

𝑒𝑎𝑖
 (𝑏𝑖 + 𝜌

𝑖
− 𝑘
𝑖
) .

(29)

Definition 6. The subsystem error (21) and (22) can reach
the sliding mode surface (27), if 𝑘

𝑖
satisfies (30) with

Assumption 5
𝑘
𝑖
≥ 𝑏
𝑖
+ 𝜌
𝑖
+ 𝜂
𝑖
, (30)

where 𝜂
𝑖
> 0 is a positive constant. Thus

�̇�
𝑎𝑖
≤ −2

𝑒𝑎𝑖


2
− 2

𝑒𝑎𝑖
 𝜂𝑖 < 0. (31)

According to Barbalat Lemma and (26) and (31), decen-
tralized sliding mode observer is asymptotic stable. From the
analysis above, a sliding mode takes place in finite time and
during the sliding motion

𝑒
𝑎𝑖
= 0,

̇𝑒
𝑎𝑖
= 0.

(32)
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Figure 5: Observe errors of multisensor fault for configuration 𝑏.

And thus from (22),
𝐶
𝑖
𝑒
𝑖
+ 𝐷
𝑖
𝑓
𝑠𝑖
− Vieq = 0, (33)

where Vieq is the equivalent output error injection which
plays the same role as the equivalent control in sliding mode
control. The equivalent output injection signal represents the
average behavior of the discontinuous function V

𝑖
defined by

(18), which is necessary to maintain an ideal sliding mode
motion.

From (33), it follows that
𝑓
𝑠𝑖
= 𝐷
−1

𝑖
(Vieq − 𝐶

𝑖
𝑒
𝑖
) . (34)

Now, it is required to recover the equivalent output error
injection Vieq. Considering the structure of V𝑖 in (18), it follows
that by choosing an appropriate positive constant scalar 𝜎

𝑖
,

Vieq can be approximated to any accuracy by

V
𝑖𝜎
= 𝑘
𝑖

𝑧
𝑎𝑖
− �̂�
𝑎𝑖

𝑧𝑎𝑖 − �̂�
𝑎𝑖

 + 𝜎
𝑖

, (35)

where 𝑘
𝑖
satisfies (30). Let

𝑓
𝑠𝑖
= 𝐷
−1

𝑖
V
𝑖𝜎
, (36)

where V
𝑖𝜎
is defined by (35). Then from (34) and (36),

𝑓
𝑠𝑖
− 𝑓
𝑠𝑖
= V
𝑖
− 𝑒ieq − V

𝑖𝜎
, (37)

where lim
𝑡→∞

𝑒
𝑖
= 0. Therefore, 𝑓

𝑠𝑖
defined by (36) is an

identification for the sensor fault 𝑓
𝑠𝑖
since ‖Vieq − V

𝑖𝜎
‖ can be

made arbitrarily small by choice of 𝜎
𝑖
.

4. Simulation Results

Reconfigurable manipulators system presented as a kind of
nonlinear interconnected system, which are employed to
verify the effectiveness of the proposed decentralized sliding
mode observer for multisensor fault identification.

The dynamic model of reconfigurable manipulators with
𝑛-DOF obtained by Newton-Euler is described as

𝑀(𝑞) ̈𝑞 + 𝐶 (𝑞, ̇𝑞) ̇𝑞 + 𝐺 (𝑞) = 𝑢, (38)
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Figure 6: Multisensor fault identification of configuration 𝑏.

where 𝑞 ∈ 𝑅
𝑛 is the vector of joint displacements, 𝑀(𝑞) ∈

𝑅
𝑛×𝑛 is the inertia matrix, 𝐶(𝑞, ̇𝑞) ∈ 𝑅

𝑛 is the Coriolis and
centripetal force, 𝐺(𝑞) ∈ 𝑅

𝑛 is the gravity term, and 𝑢 ∈ 𝑅
𝑛 is

the applied joint torque.
For the development of decentralized control, each joint

is considered as a subsystem of the entire manipulator system
interconnected by coupling torque. By separating terms only
depending on local variables (𝑞

𝑖
, ̇𝑞
𝑖
, ̈𝑞
𝑖
) from those terms of

other joint variables, each subsystem dynamical model can
be formulated in joint space as

𝑀
𝑖
(𝑞
𝑖
) ̈𝑞
𝑖
+ 𝐶
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
) ̇𝑞
𝑖
+ 𝐺
𝑖
(𝑞
𝑖
) + 𝑍
𝑖
(𝑞, ̇𝑞, ̈𝑞) = 𝑢

𝑖
,

𝑍
𝑖
(𝑞, ̇𝑞, ̈𝑞)

=
{

{

{

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑀
𝑖𝑗
(𝑞) ̈𝑞
𝑗
+ [𝑀
𝑖𝑖
(𝑞) −𝑀

𝑖
(𝑞
𝑖
)] ̈𝑞
𝑖

}

}

}

+
{

{

{

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝐶
𝑖𝑗
(𝑞, ̇𝑞) ̇𝑞

𝑗
+ [𝐶
𝑖𝑖
(𝑞, ̇𝑞) − 𝐶

𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
)] ̇𝑞
𝑖

}

}

}

+ [𝐺
𝑖
(𝑞) − 𝐺

𝑖
(𝑞
𝑖
)] ,

(39)

where 𝑞
𝑖
, ̇𝑞
𝑖
, ̈𝑞
𝑖
,𝐺
𝑖
(𝑞), and 𝑢

𝑖
are the 𝑖th element of the vectors

𝑞, ̇𝑞, ̈𝑞, 𝐺(𝑞), and 𝑢, respectively. 𝑀
𝑖𝑗
(𝑞) and 𝐶

𝑖𝑗
(𝑞, ̇𝑞) are the

𝑖𝑗th element of the matrices𝑀(𝑞) and 𝐶(𝑞, ̇𝑞), respectively.
Let

𝑥
𝑖
= [𝑥𝑖1 𝑥

𝑖2]
𝑇
= [𝑞𝑖 ̇𝑞

𝑖]
𝑇
, 𝑖 = 1, 2, . . . , 𝑛. (40)

Each subsystemmotion equationmay be presented as (1),
where

𝐴
𝑖
= [

0 1

0 0
] , 𝐵

𝑖
= [

0

1
] , 𝐶

𝑖
= [1 0] ,

𝑓
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
) = 𝑀

−1

𝑖
(𝑞
𝑖
) [−𝐶
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
) ̇𝑞
𝑖
− 𝐺
𝑖
(𝑞
𝑖
) − 𝐹
𝑖
(𝑞
𝑖
, ̇𝑞
𝑖
)]

𝑔
𝑖
(𝑞
𝑖
) = 𝑀

−1

𝑖
(𝑞
𝑖
) ,

ℎ
𝑖
(𝑞, ̇𝑞, ̈𝑞) = −𝑀

−1

𝑖
(𝑞
𝑖
) 𝑍
𝑖
(𝑞, ̇𝑞, ̈𝑞) .

(41)

Now, consider 2-DOF reconfigurable manipulators with
different configurations shown in [17], along with dynamic
model and initial state, for numerical simulation. The non-
linear terms are compensated by neural networks with the
parameters Γ

𝑖𝑓
= Γ
𝑖𝑔

= 0.0002, Γ
𝑖𝑝

= 6000, 𝜀
𝑖
= 0.0001,

𝜎
𝑖
= 0.0003, 𝑘

𝑖
= 2, 𝑓 = 0.01.

Consider configuration 𝑎 first and apply control law (12)
to the reconfigurablemanipulators working at fault-free state.
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Next, fault signals are added to the position sensor of joint 2
at 𝑡 = 6 s and velocity sensor of joint 1 at 𝑡 = 8 s, respectively,
in order to detect and identify the multisensor fault. From
Figure 1, one can see that the actual trajectories can follow the
desired trajectories at about 𝑡 = 5 s, and the actual trajectories
illustrate unstable performance after the faults occur.

In this case, an appropriate threshold is required to be
established for multisensor fault detection which can be
realized by decentralized sliding mode observer. When the
fault signals added on, the observe errors for multisensors
of each joint showed as Figure 2 should over the threshold.
From the curves in Figure 2, one can obtain that the sensor
fault can be detected online in real timewhen the faults occur.
The following step is to use (35) to identify fault function.
Figure 3 shows the results of identification with multisensor
fault. One can see the identification chattering appears only
at the beginning of the identification after a short time of
the faults occurred; the proposed scheme could identify the
fault function precisely which was verified by the actual
identification curves.

To further test the effectiveness of the proposed scheme
for multisensor fault detection and identification under dif-
ferent configurations, the same scheme is applied to the con-
figuration 𝑏. The simulation results are shown as Figures 4,
5, and 6 that illustrate the proposed decentralized sliding
mode observer can be applicable to different configurations
of reconfigurable manipulator without any parameters mod-
ification.

5. Conclusion

A decentralized sliding mode observer based on multisensor
fault detection and identification scheme for a class of non-
linear interconnected systems has been presented.Thedecen-
tralized neural networks controller is applied to compensate
the unknown term, uncertainty term, and interconnection
term when the system is fault-free. In order to detect and
identify the multisensor fault, a set of decentralized sliding
mode observer has been established by introducing a simple
filter which can transform the sensor fault into pseudo-
actuator fault scenario with diffeomorphism theory. In this
case, the control accuracy of other joints cannot be affected by
the fault one due to decentralized control.The effectiveness of
the proposed scheme is verified by the simulation results with
different configurations without modifying any parameters.
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