3 research outputs found

    Dissipativity Analysis and Synthesis for a Class of Nonlinear Stochastic Impulsive Systems

    Get PDF
    The dissipativity analysis and control problems for a class of nonlinear stochastic impulsive systems (NSISs) are studied. The systems are subject to the nonlinear disturbance, stochastic disturbance, and impulsive effects, which often exist in a wide variety of industrial processes and the sources of instability. Our aim is to analyse the dissipativity and to design the state-feedback controller and impulsive controller based on the dissipativity such that the nonlinear stochastic impulsive systems are stochastic stable and strictly (Q,S,R)-dissipative. The sufficient conditions are obtained in terms of linear matrix inequality (LMI), and a numerical example with simulation is given to show the correctness of the derived results and the effectiveness of the proposed method

    H

    Get PDF
    This paper presents H∞ excitation control design problem for power systems with input time delay and disturbances by using nonlinear Hamiltonian system theory. The impact of time delays introduced by remote signal transmission and processing in wide-area measurement system (WAMS) is well considered. Meanwhile, the systems under investigation are disturbed by random fluctuation. First, under prefeedback technique, the power systems are described as a nonlinear Hamiltonian system. Then the H∞ excitation controller of generators connected to distant power systems with time delay and stochasticity is designed. Based on Lyapunov functional method, some sufficient conditions are proposed to guarantee the rationality and validity of the proposed control law. The closed-loop systems under the control law are asymptotically stable in mean square independent of the time delay. And we through a simulation of a two-machine power system prove the effectiveness of the results proposed in this paper

    Delay-Dependent Robust ∞ Filtering of the Takagi-Sugeno Fuzzy Stochastic Systems

    Get PDF
    This paper is concerned with the problem of the robust ∞ filtering for the Takagi-Sugeno (T-S) fuzzy stochastic systems with bounded parameter uncertainties. For a given T-S fuzzy stochastic system, this paper focuses on the stochastically mean-square stability of the filtering error system and the ∞ performance level of the output error and the disturbance input. The design method for delay-dependent filter is developed based on linear matrix inequalities. Finally, the effectiveness of the proposed methods is substantiated with an illustrative example
    corecore