25,179 research outputs found

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    Improving Software Performance in the Compute Unified Device Architecture

    Get PDF
    This paper analyzes several aspects regarding the improvement of software performance for applications written in the Compute Unified Device Architecture CUDA). We address an issue of great importance when programming a CUDA application: the Graphics Processing Unit’s (GPU’s) memory management through ranspose ernels. We also benchmark and evaluate the performance for progressively optimizing a transposing matrix application in CUDA. One particular interest was to research how well the optimization techniques, applied to software application written in CUDA, scale to the latest generation of general-purpose graphic processors units (GPGPU), like the Fermi architecture implemented in the GTX480 and the previous architecture implemented in GTX280. Lately, there has been a lot of interest in the literature for this type of optimization analysis, but none of the works so far (to our best knowledge) tried to validate if the optimizations can apply to a GPU from the latest Fermi architecture and how well does the Fermi architecture scale to these software performance improving techniques.Compute Unified Device Architecture, Fermi Architecture, Naive Transpose, Coalesced Transpose, Shared Memory Copy, Loop in Kernel, Loop over Kernel

    Fault Detection Effectiveness of Metamorphic Relations Developed for Testing Supervised Classifiers

    Full text link
    In machine learning, supervised classifiers are used to obtain predictions for unlabeled data by inferring prediction functions using labeled data. Supervised classifiers are widely applied in domains such as computational biology, computational physics and healthcare to make critical decisions. However, it is often hard to test supervised classifiers since the expected answers are unknown. This is commonly known as the \emph{oracle problem} and metamorphic testing (MT) has been used to test such programs. In MT, metamorphic relations (MRs) are developed from intrinsic characteristics of the software under test (SUT). These MRs are used to generate test data and to verify the correctness of the test results without the presence of a test oracle. Effectiveness of MT heavily depends on the MRs used for testing. In this paper we have conducted an extensive empirical study to evaluate the fault detection effectiveness of MRs that have been used in multiple previous studies to test supervised classifiers. Our study uses a total of 709 reachable mutants generated by multiple mutation engines and uses data sets with varying characteristics to test the SUT. Our results reveal that only 14.8\% of these mutants are detected using the MRs and that the fault detection effectiveness of these MRs do not scale with the increased number of mutants when compared to what was reported in previous studies.Comment: 8 pages, AITesting 201
    • 

    corecore