1,199 research outputs found

    Design and implementation of robust embedded processor for cryptographic applications

    Get PDF
    Practical implementations of cryptographic algorithms are vulnerable to side-channel analysis and fault attacks. Thus, some masking and fault detection algorithms must be incorporated into these implementations. These additions further increase the complexity of the cryptographic devices which already need to perform computationally-intensive operations. Therefore, the general-purpose processors are usually supported by coprocessors/hardware accelerators to protect as well as to accelerate cryptographic applications. Using a configurable processor is just another solution. This work designs and implements robust execution units as an extension to a configurable processor, which detect the data faults (adversarial or otherwise) while performing the arithmetic operations. Assuming a capable adversary who can injects faults to the cryptographic computation with high precision, a nonlinear error detection code with high error detection capability is used. The designed units are tightly integrated to the datapath of the configurable processor using its tool chain. For different configurations, we report the increase in the space and time complexities of the configurable processor. Also, we present performance evaluations of the software implementations using the robust execution units. Implementation results show that it is feasible to implement robust arithmetic units with relatively low overhead in an embedded processor

    Algorithmic Security is Insufficient: A Comprehensive Survey on Implementation Attacks Haunting Post-Quantum Security

    Full text link
    This survey is on forward-looking, emerging security concerns in post-quantum era, i.e., the implementation attacks for 2022 winners of NIST post-quantum cryptography (PQC) competition and thus the visions, insights, and discussions can be used as a step forward towards scrutinizing the new standards for applications ranging from Metaverse, Web 3.0 to deeply-embedded systems. The rapid advances in quantum computing have brought immense opportunities for scientific discovery and technological progress; however, it poses a major risk to today's security since advanced quantum computers are believed to break all traditional public-key cryptographic algorithms. This has led to active research on PQC algorithms that are believed to be secure against classical and powerful quantum computers. However, algorithmic security is unfortunately insufficient, and many cryptographic algorithms are vulnerable to side-channel attacks (SCA), where an attacker passively or actively gets side-channel data to compromise the security properties that are assumed to be safe theoretically. In this survey, we explore such imminent threats and their countermeasures with respect to PQC. We provide the respective, latest advancements in PQC research, as well as assessments and providing visions on the different types of SCAs

    The Future Between Quantum Computing and Cybersecurity

    Get PDF
    Quantum computing, a novel branch of technology based on quantum theory, processes information in ways beyond the capabilities of classical computers. Traditional computers use binary digits [bits], but quantum computers use quantum binary digits [qubits] that can exist in multiple states simultaneously. Since developing the first two-qubit quantum computer in 1998, the quantum computing field has experienced rapid growth. Cryptographic algorithms such as RSA and ECC, essential for internet security, rely on the difficulty of complex math problems that classical computers can’t solve. However, the advancement of quantum technology threatens these encryption systems. Algorithms, such as Shor’s, leverage the power of quantum machines to factor large numbers, a task challenging for classical computers. Acknowledging this threat, it is important to develop and implement quantum-resistant cryptography to safeguard communication, financial systems, and national security. This study covers the past, present, and future of quantum computing and cybersecurity and their increasingly connected roles. It provides a detailed history of both fields, explores the challenges posed by quantum computing to traditional cryptographic methods, and discusses the development of new, robust cryptographic solutions to ensure security in a future where quantum computing is prevalent
    • …
    corecore