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ABSTRACT

STEALTHY PARAMETRIC HARDWARE TROJANS IN
VLSI CIRCUITS

SEPTEMBER 2019

SAMANEH GHANDALI

B.Sc., SHAHED UNIVERSITY

M.Sc., SHAHID BEHESHTI UNIVERSITY

PhD, UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Christof Paar

Over the last decade, hardware Trojans have gained increasing attention in

academia, industry and by government agencies. In order to design reliable counter-

measures, it is crucial to understand how hardware Trojans can be built in practice.

This is an area that has received relatively scant treatment in the literature. In this

thesis, we examine how particularly stealthy parametric Trojans can be introduced to

VLSI circuits. Parametric Trojans do not require any additional logic and are purely

based on subtle manipulations on the sub-transistor level to modify the parameters of

few transistors which makes them very hard to detect.

We introduce a design methodology to insert stealthy parametric hardware Trojans

which are based on injecting extremely rare path delay faults into the netlist of the

target circuit. As a case study, we apply our method to a 32-bit multiplier circuit

resulting in a stealthy Trojan multiplier that computes faulty outputs for specific

combinations of input pairs that are applied to the circuit. The multiplier can be

v



used to realize bug attacks, introduced by Biham et al. in 2008. We also extend this

concept and show how it can be used to attack ECDH key agreement protocols. Our

method is a versatile tool for designing stealthy Trojans for a given circuit and is not

restricted to multipliers and the bug attack.

In this thesis we also examine how a stealthy side-channel hardware Trojan can be

inserted in a provably-secure side-channel analysis protected implementation. Once

the Trojan is triggered, the malicious design exhibits exploitable side-channel leakage

leading to successful key recovery attacks. The underlying concept is based on a

secure masked hardware implementation which does not exhibit any detectable leakage.

However, by running the device at a particular clock frequency one of the requirements

of the underlying masking scheme is not fulfilled anymore, and the device’s side-channel

leakage can be exploited. We apply our technique to a Threshold Implementation

of the PRESENT block cipher realized in both FPGA and ASIC. We show that

triggering the Trojan makes both FPGA and ASIC prototypes vulnerable to certain

SCA attacks.

True random number generators (TRNGs) are an essential component of cryp-

tographic designs, which are used to generate private keys for encryption and au-

thentication, and are used in masking countermeasures. This thesis also presents a

mechanism to design a stealthy parametric hardware Trojan for ring oscillator-based

TRNGs. When the Trojan is triggered by operation at a specific high temperature

the malicious TRNG generates predictable non-random outputs, yet under normal

operating conditions it works correctly. Also we elaborate a stochastic model based

on Markov Chains by which the attacker can use their knowledge of the Trojan to

predict the TRNG outputs.
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CHAPTER 1

MOTIVATION

1.1 Introduction

Cryptographic primitives are often the most trusted components in modern security

solutions, ranging from network routers to IoT devices. Unfortunately, this makes

cryptographic algorithms an attractive target for subversion by malicious actors.

Manipulating hardware implementations as opposed to software implementations can

lead to cryptographic Trojans that are particularly difficult to detect. It is widely

believed that such Trojans are of special interest to nation-state adversaries. Hardware

Trojans are malicious alterations of the physical design that compromise the security

or safety of the attacked device. They have gained increasing attention in academia,

industry and government agencies over the last ten years or so. There is a large body of

research concerned with various methods for detecting Trojans, cf., e.g., [42, 87, 24, 9].

On the other hand, there is scant treatment in literature about how to design Trojans.

Nevertheless, Trojan detection and design are closely related: in order to design

effective detection mechanisms and countermeasures, we need an understanding of

how Hardware Trojans can be built. This holds in particular with respect to Trojans

that are specifically designed to avoid detection. The situation is akin to the interplay

of cryptography and cryptanalysis.

There are several different ways that hardware Trojans can be inserted into an

IC [42]. The insertion scenarios that have drawn the most attention in the past are

hardware Trojans introduced during manufacturing by an untrusted semiconductor

foundry. One of the main motivations behind this is the fact that the vast majority

of ICs world wide are fabricated abroad, and a foundry can possibly be pressured by
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a government agency to maliciously manipulate the design. However, we note that

a similar situation can exist in which the original IC designer is pressured by her

own government to manipulate all or some of the ICs, e.g., those that are used in

overseas products. Similarly, 3rd party IP cores are another possible insertion point.

The possibility of hardware Trojan insertion is not restricted to the manufacturing in

foreign countries. Government mandated backdoors or malicious employees could also

be the source of Hardware Trojans. All of these insertion scenarios have in common

that the party inserting the Trojan will have a main goal of designing/implementing

the Trojan in such a way that the chance of detection becomes very low.

The primary setting we consider in this dissertation is modification during manu-

facturing, but the methods also carry over to the other scenarios mentioned above.

The Trojan will be inserted by modifying a few gates at the sub-transistor level during

manufacturing. This contribution is concerned with cryptographic Trojans which

possess zero overhead in terms of logic resources and are thus, extremely stealthy.

The dissertation introduces three different techniques related to hardware Trojans

including i) a design methodology for inserting a stealthy parametric hardware Trojan,

ii) a side-channel hardware Trojan for provably-secure SCA protected implementations,

iii) a temperature-based hardware Trojan for ring oscillator-based TRNGs.

In our design methodology for inserting hardware Trojans, the goal is to select an

extremely rare path and chose the delays of its gates such that only for extremely

rare input combinations these delays add up to a path delay fault. Since not a single

transistor is removed or added to the design and the changes to the individual gates

are minor, the Trojan is very difficult to detect post-manufacturing using reverse-

engineering, visual inspection, side-channel profiling or most other known detection

methods. Due to the extremely rare trigger conditions, it is also highly unlikely that

the Trojan will be detected during functional testing. Even full reverse-engineering of

the IC will not reveal the presence of the backdoor. Similarly, since the actual Trojan

will be inserted in the last step of the design flow, the Trojan will not be present at
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higher abstraction levels such as the netlist. Accordingly, this type of Trojan is also

very interesting for the scenario of stealthy, government-mandated backdoors. The

number of engineers that are aware of the Trojan would be reduced to a minimum

since even the designers of the Trojan-infected IP core would not be aware that such a

backdoor has been inserted into the product. This can be crucial to eliminate the risk

of whistle blowers revealing the backdoor. In summary, our methodology overcomes

two major problems a Trojan designer faces, namely making the Trojan detection

resistant and to provide a very rare trigger condition.

Besides the hardware Trojan design methodology, this dissertation focuses on

an aspect of hardware security that is one of the major research areas in hardware

security: side-channel analysis. In a side-channel analysis an attacker exploits the

fact that an embedded device is not a black-box that obtains defined inputs and only

produces defined outputs. Instead, every physical system that performs some kind of

computation will inevitably leak additional information over physical channels, such

as the power consumption, the required execution time, or the thermal profile. In

side-channel analysis, these physical properties are first measured and then exploited

to derive additional information about the embedded system. Such information could

be the secret key that is used in an encryption algorithm. We present a mechanism

which shows how stealthy side-channel hardware Trojans can be inserted in provably-

secure side-channel analysis protected implementations. Once the Trojan is triggered,

the malicious design exhibits exploitable side-channel leakage leading to successful

key recovery attacks. Integrating an SCA Trojan into an SCA-protected design is

challenging if the device is supposed to be evaluated by a third-party certification

body. To pass certification, the the device should provide the desired SCA protection

under a white-box scenario, i.e., all design details including the netlist are known to

the evaluation lab. We present a mechanism to design a provably- and practically-

secure SCA-protected implementation which can be turned into an unprotected

implementation by a Trojan adversary. In ASIC platforms, it is indeed inserted by
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subtle manipulations at the sub-transistor level to modify the parameters of a few

transistors. The same is achievable on FPGA applications by changing the routing

of particular signals, without other resource utilization overhead. The underlying

concept is based on a secure masked hardware implementation which does not exhibit

any detectable leakage. However, by running the device at a particular clock frequency

one of the requirements of the underlying masking scheme is not fulfilled anymore,

i.e., the Trojan is triggered, and the device’s side-channel leakage can be exploited.

High entropy random numbers are an essential component in many facets of

information security, which forms the foundation for many cryptographic algorithms

used to build cryptosystems. Some common applications are generating private keys,

nonces, random numbers in challenge response protocols, and random numbers in

countermeasure implementations to mask key-dependent values. One of the most

popular methods for generating random numbers is sampling jittery signals generated

by ring oscillators (ROs) [86] and [25]. In this dissertation, we present a parametric

hardware Trojan for an RO-based TRNG presented in [86] in such a way that it works

correctly under normal environmental conditions, but it produces non-random and

predictable outputs at particular environmental conditions such as high environmental

temperature. Our Trojan does not require the addition of any additional logic (even a

single gate) to the design, making it extremely hard to detect. More precisely, our

technique injects a parametric Trojan that can be triggered. Under normal conditions

the randomness of the TRNG output is not affected, which enables the Trojan to avoid

being detected by an evaluation lab. By increasing the temperature of the subverted

device (or by increasing its workload) the Trojan is triggered and exhibits non-random

and periodic outputs. We show that by injecting this Trojan, we are able to control

the output of the TRNG. This biasing significantly lowers the security level even of

highly protected crypto-core implementations rely on the TRNG. Also we elaborate a

stochastic model based on Markov Chains by which the attacker’s knowledge enables

predicting the output of the Trojan infected TRNG.
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1.2 Organization and Contribution of the Thesis

The main contributions in this thesis are as follows:

• The thesis introduces a new class of parametric hardware Trojans, the Path

Delay Trojans. They possess the two desirable features that they are (i) very

stealthy and thus difficult to detect with most standard methods and (ii) have

very rare trigger conditions. We present an automation flow for inserting the

proposed style of Trojan. We propose an efficient, SAT solver-based path

selection algorithm, which identifies suitably rare paths in a given target circuit.

We also propose a second algorithm, based on genetic algorithms, for distributing

the necessary delay along the rare path to minimize its impact on the remaining

circuit. As a case study for the effectiveness of the proposed method, a Trojan

multiplier is designed. We were able to identify a rare path and perform specific

delay modification in a 32-bit multiplier circuit model in such a way that the

faulty behavior only occurs for very few combinations of two consecutive input

values. We note that the input space of the multiplier is (232)2 = 264 so that

random input values occur very rarely during regular operation. We show how

the Trojan multiplier can used for realizing the bug attack by Biham et al.

[10, 11] and propose a related attack on the ECDH key agreement protocol. We

show that the attacker can engineer the failure probability to the desired level

by increasing the introduced propagation delay of the Trojan.

• The thesis presents a mechanism to design a provably- and practically-secure

SCA-protected implementation which can be turned into an unprotected im-

plementation by a Trojan adversary. Our Trojan does not add any logic (even

a single gate) to the design, making it very hard to detect. In case of ASIC

platforms, the trojan is added by slightly changing the characteristic of a few

transistors, and for FPGA platforms by changing the routing of particular sig-

nals. Most notably, our technique is not based on the leakage of the PRNG,
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and it does not affect the provable-security feature of the underlying design

unless the Trojan is triggered. Under normal conditions the device does not

exhibit any SCA leakage. By increasing the clock frequency of the malicious

device (or by decreasing its supply voltage) the Trojan is triggered and exhibits

exploitable leakage. The high clock frequency that triggers the Trojan is beyond

the maximum frequency at which the device can correctly operate. Hence, the

device is not expected to be evaluated under such a condition by evaluation labs.

• The thesis proposes parametric hardware Trojans for RO-based TRNGs. We

target the TRNG presented in [86] so that it works correctly under normal

environmental conditions, but produces predictable outputs at a particular high

temperature. Our parametric Trojan does not require the addition of any logic

to the design, making it extremely hard to detect. We show that by injecting

this Trojan, we are able to controllably bias the output of the TRNG, and we

elaborate a stochastic Markov Chain model by which the attacker’s knowledge

of the Trojan enables predicting the outputs of the Trojan infected TRNG.

This biasing can compromise the security of any functionality that relies on the

TRNG.

The chapters of the thesis are structured as follows. Chapter 2 deals with necessary

background and definitions in the areas of hardware Trojans and threshold implemen-

tations as an SCA countermeasure, and reviews related work in these areas. Chapter 3

introduces our methodology to design stealthy parametric hardware Trojans that

induce path delay faults (PDF) for extremely rare inputs. The chapter presents path

selection and delay distribution algorithms, applies them to a 32-bit multiplier circuit,

and shows how to exploit the specific fault model of the path delay Trojan multiplier

to attack ECDH key agreement protocols. Chapter 4 shows how to insert a parametric

hardware Trojan with very low overhead into SCA-resistant designs on ASIC and

FPGA platforms to leak exploitable information through side channels. Chapter 5
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explain how we insert a stealthy parametric hardware Trojan into the RO-based

TRNG circuit which will be triggered by a specific high operating temperature, and

we elaborate a stochastic model based on Markov Chains by which the attacker can

predicted the output of the Trojan infected TRNG. The findings in this thesis are

summarized in Chapter 6 and possible future work is discussed.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Hardware Trojans

The power of hardware Trojans was first demonstrated by King et al. in 2008 by

showing how a hardware Trojan inserted into a CPU can enable virtually unlimited

access to the CPU by an external attacker [46]. The Trojan presented by King et

el. was inserted into the HDL code of the design. Similarly, Lin et el. presented

a hardware Trojan that stealthily leaks out the cryptographic key using a power

side-channel [51]. This hardware Trojan was also inserted at the HDL or netlist level,

similarly to the hardware Trojans that were designed as part of a student hardware

Trojan challenge at ICCD 2011 [71]. How to build stealthy Trojans at the layout-level

was demonstrated in 2013 by Becker et el. which showed how a hardware Trojan

can be inserted into a cryptographically secure PRNG or a side-channel resistant

S-Box only by manipulating the dopant polarity of a few registers [7]. Another idea

proposed in literature is building hardware Trojans that are triggered by aging [79].

Such Trojans are inactive after manufacturing and only become active after the IC

has been in operation for a long time. Kumar et el. proposed a parametric Trojan [50]

that triggers probabilistically with a probability that increases under reduced supply

voltage.

Compared to research concerned with the design of hardware Trojan, considerably

more results exist related to different hardware Trojan detection mechanisms and

countermeasures. Most research focuses on detecting hardware Trojans inserted during

manufacturing. In many cases, a Trojan-free golden model serves as a reference. One

important question is how to get to a Trojan-free golden model. One approach
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proposed is to use visual reverse-engineering of a few chips to ensure that these chips

were not manipulated. For this the layout is compared to SEM images of the chip.

In [4] methods of how to automatically do this are discussed. Please note that that

not all hardware Trojans are directly visible in black-and-white SEM images. For

example, to detect the dopant-level hardware Trojans additional steps are needed,

e.g., the method presented by Sugawara et el. [80]. One motivation of our work is

that we might achieve an even higher degree of stealthiness by only slowing down

transistors as opposed to completely changing transistors as has been done in [7].

Such parametric changes can be done cleverly to make visual reverse-engineering

very difficult as discussed in Section 3.2. Another approach to Trojan detection uses

power profiles that are used to compare the chip-under-test with previously recorded

side-channel measurement of the golden chip. The most popular approach uses power

side channels, first proposed by Agrawal et el. [3]. The idea to build specific Trojan

detection circuitry has also been proposed, e.g., in [72]. However, these approaches

usually suffer from the problem that a Trojan can also be inserted into such detection

circuitry. Preventing hardware Trojans inserted at the HDL level by third party IP

cores has been discussed, e.g., in [41] and [84]. Efficient generation of test patterns for

hardware Trojans triggered by rare input signals is the focus of work by Chakraborty

et el. [24] and Saha et el. [74]. [45] and [44] focus on preventing a reverse engineer

from learning the exact function implemented on a target chip.

Closely related to hardware Trojans are certain types of physical attacks. A

physical attack on random number generators was presented in [58] which targets

an RO based TRNG implemented in an IC. Injecting a sine wave onto the power

supply, the operating conditions were modified and a bias appeared at the output

signal. Another physical attack presented in [6], targets another RO based TRNG [85]

using an electromagnetic attack. In this attack, the ROs were locked on the injection

frequency, generating a controllable bias at the output. The work in [59] investigated
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the impact of power and clock glitches, temperature and underpowering on a TRNG

design [25] implemented on an FPGA.

2.2 Side-Channel Based Trojans

Our focus in this subsection is Trojans which leak out secrets through a side

channel. The first such Trojan has been introduced in [52] and [53] which stealthily

leaks out the cryptographic key through a power consumption side channel. This

Trojan, made by a moderately large circuit including an LFSR and leaking circuit,

is inserted at the HDL or netlist level. Therefore, it is likely detected by a Trojan

inspector. Further, the Trojan designs in these works [52, 53] are not triggerable, i.e.,

they always leak through the side channel, which might be exploited by anybody not

only the Trojan attacker.

On the other hand, the cryptographic devices— if pervasive and/or ubiquitous— are

in danger of side-channel analysis (SCA) attacks. Two decades after the introduction of

such physical attacks [47, 48], integration of dedicated SCA countermeasures is a must

for devices which deal with security. Therefore, if the design is not protected against

SCA threats, any SCA adversary would be able to reveal the secrets independent of

the existence of such a Trojan [53].

In a follow-up work [43], the authors expressed a relatively similar concept on

an SCA-protected implementation. Their technique is based on inserting a logical

circuit forming an LFSR-based Trojan leaking the internal state of a PRNG. As a

side note, random number generators are necessary modules for those SCA-protected

implementations which are based on masking [56]. Hence, the Trojan adversary would

detect the internal state of the PRNG by means of SCA leakages and can then be able

to conduct DPA attacks due to knowing the masks. It should be noted that those

products which need to be protected against physical attacks are usually evaluated

by a third-party certification body, e.g., through a common criteria evaluation lab.
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Therefore, due to its relatively large circuit, such a Trojan is very likely detected by

an inspector.

As another work in this domain, we should refer to [7], where the Trojan is inserted

by changing the dopant polarity of a few transistors in a circuit realized by the

DPA-resistant logic style iMDPL [67]. However, no such logic styles can perfectly

provide security, and the leakage of an iMDPL circuit can still be exploited by ordinary

SCA adversaries [60].

2.3 Threshold Implementation

It can be said that masking is one of the most-studied countermeasures against

SCA attacks. Masking is based on the concept of secret sharing, where a secret x

(e.g., intermediate values of a cipher execution) is represented by a number of shares

(x1, . . . ,xn). In case of an (n, n)-threshold secret sharing scheme, having access to

t < n does not reveal any information about x. Amongst those is Boolean secret

sharing, known as Boolean masking in the context of SCA, where x =
n⊕

i=1

xi. Hence,

if the entire computation of a cipher is conducted on such a shared representation, its

SCA leakage will be (on average) independent of the secrets as long as no function

(e.g., combinatorial circuit) operates on all n shares.

Due to the underlying Boolean construction, application of a linear function L(.)

over the shares is straightforward since L(x) =
n⊕

i=1

L(xi). All the difficulties belong to

implementing non-linear functions over such a shared representation. This concept

has been applied in hardware implementation of AES (mainly with n = 2) with no

success [66, 57, 22, 61] until the Threshold Implementation (TI) – based on sound

mathematical foundations – has been introduced in [65], which defines minimum

number of shares n ≥ t+ 1 with t the algebraic degree of the underlying non-linear

function. For simplicity (and as our case study is based on) we focus on quadratic

Boolean functions, i.e., t = 2, and minimum number of shares n = 3. For example for

cubic bijection functions, decomposition techniques can be used to obtain quadratic

11



bijection functions [17, 30, 31]. Suppose that the TI of the non-linear function y = F(x)

is desired, i.e., (y1,y2,y3) = F∗(x1,x2,x3), where

y1 ⊕ y2 ⊕ y3 = F(x1 ⊕ x2 ⊕ x3). (2.1)

Indeed, each output share yi∈{1,2,3} is provided by a component function F i(., .)

which receives only two input shares. In other words, one input share is definitely

missing in every component function. This, which is a requirement defined by TI

as non-completeness, supports the aforementioned concept that “no function (e.g.,

combinatorial circuit) operates on all n shares”, and implies the given formula n ≥ t+1.

Therefore, three component functions (F1 (x2,x3) ,F2 (x3,x1) ,F3 (x1,x2)) form the

shared output (y1,y2,y3).

2.3.1 Uniformity

In order to fulfill the above-given statement that “having access to t < n shares does

not reveal any information about x”, the shares need to follow a uniform distribution.

For simplicity suppose that n = 2, and the shares (x1,x2) represent secret x. If

the distribution of x1 has a bias (i.e., not uniform) which is known to the adversary,

he can observe the distribution of x2 = x ⊕ x1 and guess x. Hence, the security

of masking schemes1 relies on the uniformity of the masks. More precisely, when

x1 = m, x2 = x⊕m, and m is taken from a randomness source (e.g., a PRNG), the

distribution of m should be uniform (with full entropy).

The same holds for higher-order masking, i.e., n > 2. However, not only the

distribution of every share but also the joint distribution of every t < n shares is

important. In case of F∗(., ., .) as a TI of a bijective function F(.), the uniformity

property of TI is fulfilled if F∗(., ., .) forms a bijection. Otherwise, the security of

such an implementation cannot be guaranteed. Note that fulfilling the uniformity

1Except those which are based on low-entropy masking [23, 55].

12



property of TI constructions is amongst its most difficult challenges, and it has been

the core topic of several articles [17, 68, 14, 65, 8]. Alternatively, the shares can be

remasked at the end of every non-uniform shared non-linear function (see [14, 62]),

which requires a source to provide fresh randomness at every clock cycle. Along the

same line, another type of masking in hardware (which reduces the number of shares)

has been developed in [73, 36], which (almost always) needs fresh randomness to fulfill

the uniformity.

We should emphasize that the above given expressions illustrate only the first-order

TI of bijective quadratic functions. For other cases including higher-order TI we refer

the interested reader to the original articles [65, 14, 17].
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CHAPTER 3

A DESIGN METHODOLOGY FOR STEALTHY
PARAMETRIC HARDWARE TROJANS

1In this work, we examine how particularly stealthy Trojans can be introduced to

a given target circuit. The Trojans are triggered by violating the delays of very rare

combinational logic paths. These are parametric Trojans, i.e., they do not require any

additional logic and are purely based on subtle manipulations on the sub-transistor

level to modify the parameters of the transistors. The Trojan insertion is based on

a two-phase approach. In the first phase, a SAT-based algorithm identifies rarely

sensitized paths in a combinational circuit. In the second phase, a genetic algorithm

smartly distributes delays for each gate to minimize the number of faults caused by

random vectors.

As a case study, we apply our method to a 32-bit multiplier circuit resulting in a

stealthy Trojan multiplier. This Trojan multiplier only computes faulty outputs if

specific combinations of input pairs are applied to the circuit. The multiplier can be

used to realize bug attacks, introduced by Biham et al. [10, 11]. In addition to the

bug attacks proposed previously, we extend this concept for the specific fault model

of the path delay Trojan multiplier and show how it can be used to attack ECDH key

agreement protocols.

1The research presented in this chapter was published in [32].
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3.1 Overview

This work implements Trojan functionality in a given target circuit by using path

delay faults (PDF), without modification to logic circuit, to induce inaccurate results

for extremely rare inputs. Before describing the details of our method, we first define

the notion of a viable delay-based Trojan in the unmodified HDL of the circuit as

follows. A viable delay-based trojan must posses the following two properties.

Triggerability For secret inputs, which are known to the attacker, cause an error

with certainty or relatively high probability.

Stealthiness For randomly chosen inputs, cause an error with extremely low proba-

bility.

As shown in Fig. 3.1, our method of creating triggerable and stealthy delay-based

Trojans consists of two phases: path selection and delay distribution. We give an

overview of each phase here, and give detailed descriptions in sections 3.3 and 3.4.

Figure 3.1: Flowchart of the proposed method for creating a stealthy PDF (path delay
faults).

Path Selection: The path selection phase finds a rarely sensitized path from the

primary inputs of a combinational circuit to the primary outputs. The algorithm

chooses the path incrementally by adding gates to extend a subpath backward toward

inputs and forward toward outputs. The selection of which gates to include is guided
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by controllability and observability metrics so that the path will be rarely sensitized.

To ensure that the selected path can be triggered, a SAT-based check is performed to

ensure that the path remains sensitizable each time a gate is added. In addition to

ensuring that the path is sensitizable, the SAT-based check also provides the Trojan

designer with a specific input combination that will sensitize the path. This input

combination will later serve as the trigger for the Trojan. Details of the path selection

are given in Sec. 3.3.

Delay Distribution: After a rarely sensitized path is selected, the overall delay of

the path must be increased so that a delay fault will occur when the path is sensitized;

this is required for the Trojan to be triggerable. However, any delay added to gates on

the selected path may also cause delay faults on intersecting paths, which would cause

more frequent errors and compromise stealthiness. Our delay distribution heuristic

addresses this problem by smartly choosing delays for each gate to minimize the

number of faults caused by random vectors. At the same time, the approach ensures

that the overall path delay is sufficient for the fault to occur when the trigger vectors

are applied. Details of delay distribution are given in Sec 3.4.

3.2 Delay Insertion

Delay faults occur when the total propagation delay along a sensitized circuit path

exceeds the clock period. Our algorithm causes delay faults by increasing the delay of

gates on a chosen path. While the approach is compatible with any mechanism for

controlling gate delays, in this section we provide background on practical methods

that a Trojan designer might use to implement slow gates. In static CMOS logic, a

path delay fault is not triggered by a single input vector, but instead is triggered by

a sequence of two input vectors applied on consecutive cycles. The physical reason

for delay being caused by a pair of inputs is that delay depends on the charging or

discharging of capacitances, and the initial states of these capacitances in the second

vector are determined as final states from the first vector. Assuming the capacitances
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need to be charged or discharged along a path, as is the case in delay faults, the

delay of each gate depends on how quickly it can charge or discharge some amount

of capacitance on its output node, and diminishing the ability of a gate to do so will

slow it down. There are several stealthy ways of changing a circuit to make gates

slower. As an example, we list three methods below. We note that circuit designers

typically face the opposite and considerably more difficult task, namely making gates

fast. The ever-shrinking feature size of modern ICs is amenable to our goal of slowing

gates down through minuscule alterations.

3.2.1 Decrease Width

A gate library typically includes several drive strengths for each gate type, corre-

sponding to different transistor widths. A narrow transistor is slower to charge a load

capacitance because transistor current is linear in channel width. A straightforward

way to increase delay is to replace a gate with a weaker variant of the same gate, or

to create a custom cell variant with an extremely narrow channel. A limitation to

using a downsized gate is that an attacker who delayers the chip could potentially

observe the sizing optically, depending on how much the geometry has been altered.

3.2.2 Raise Threshold

A second way of increasing gate delay is to increase threshold voltages of selected

transistors through doping or body biasing. Dual-Vt design is common in ICs and

allows transistors to be designated as high or low threshold devices; low threshold

devices are fast and used where delay is critical, and high threshold devices are slow

and used elsewhere to reduce static power. Typically no more than two threshold

levels are used on a single chip because creating multiple thresholds through doping

requires additional process steps, but in principle an arbitrary number of thresholds

can be created. Body biasing, changing the body-source voltage of MOSFETs, is

another way to change threshold and delay [49]; specifically, a reverse body bias (i.e.,

body terminal at lower voltage than source) raises threshold voltage and slows down
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a device. Regardless whether the mechanism is doping or body biasing, a raised

threshold voltage will cause transistors to turn on later when an input switches, and

to conduct less current when turned on, so the output capacitance connected to

the transistor will be charged or discharged more slowly. Both, changing to dopant

concentrations and body biasing, are difficult to detect, even with invasive methods.

3.2.3 Increase Gate Length

Delay of chosen gates can be increased by gate length biasing. Lengthening the

gate of transistor causes a reduction in current, and therefore increases delay [39].

Again, the likelihood of detection depends on the degree of the alteration.
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Figure 3.2: Propagating an input transition to an output transition requires current to
charge or discharge a capacitor. Decreasing width or increasing length of MOSFETs
are two ways of reducing switching current and increasing propagation delay.

We note that the methods sketched above (and other slow-down alterations) can

be combined such that each manipulation is relatively minor and, thus, more difficult

to detect.

3.3 Phase I: Rare Path Selection

Fundamentally, the challenge in designing and validating triggerable and stealthy

delay-based Trojans is that timing and logical sensitization cannot be decoupled.
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Regardless of the type of path sensitization considered, the probability of causing an

error is not a well-defined concept until after delays are assigned. Therefore, when

designing a candidate Trojan, path selection and delay assignment must both be

considered. We will use a heuristic for this which combines logical path selection and

delay distribution along a chosen path.

In this phase we try to select a path among huge number of paths existing in

the netlist of a multiplier circuit, in such a way that random inputs will very rarely

sensitize the path. The rareness is a first step towards ensuring stealthiness of the

Trojan.

3.3.1 Controllability and Observability

Before giving our algorithm, we introduce several preliminaries. First, we note

that every node in the circuit has a controllability metric and an observability metric

associated with the 0 value and the 1 value. Controllability and observability are

common metrics used in testing. Controllability of a 0 or 1 value on a circuit node is

an estimate of the probability that a random input vector would induce that value on

that node. Observability of a 0 or 1 value on a node is an estimate of the probability

with which that value would propagate to some output signal when a random vector is

applied. For rareness, we seek a path that includes low controllability nodes and low

observability nodes, as this would indicate that the values on the path rarely occur

randomly, and when they do occur they are usually masked from reaching the outputs.

We estimate controllability using random simulation, and observability using random

fault injection [40].

3.3.2 Timing Graph

The propagation delays of logic paths in combinational VLSI circuits are typically

represented using weighted DAGs called timing graphs. Each node in a circuit will

have two nodes in the timing graph, representing rising and falling transitions on the

node; we use the terms transition and node interchangeably when discussing timing
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Figure 3.3: Circuit and corresponding timing graph.

graphs. A directed edge between two nodes exists if the transition at the tail of the

edge can logically propagate to the one at the head. The edges that exist in the timing

graph therefore depend on the logic function of each gate in the circuit (see Fig. 3.3).

For example, an AND gate with inputs A and B, and output X, will have an edge

from A ↑ to X ↑, from A ↓ to X ↓, from B ↑ to X ↑, and from B ↓ to X ↓, but will

not have an edge from A ↑ to X ↓ because a rising transition on an AND gate input

cannot induce a falling output. In timing analysis, e.g. STA, the edge weights of a

timing graph represent propagation delay, but for our purpose of path selection, the

delays are ignored and we utilize only the connectivity of the timing graph.

3.3.3 Selecting a Path Through Timing Graph

Our path selection technique seeks to find a path π through the timing graph of

the circuit that is rarely sensitized. Note that the delays are not considered in this

phase of the work. Path π is initialized to contain a single hard to sensitize transition

somewhere in the middle of the circuit. More formally, the starting point for the path

search is a rising or falling transition on a single node such that the product of its 0

and 1 controllability values is the lowest among all nodes in the circuit. This initial

single-node path π is then extended incrementally backward until reaching the primary

inputs (PIs), and extended incrementally forward until reaching the primary outputs

(POs). The backward propagation is given in Alg. 1, and the forward propagation is

given in Alg. 2.
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First we explain the backward propagation heuristic in Alg. 1. Starting from the

first transition (i.e. the tail) on the current path π, we repeatedly try to extend the

path back toward the PIs by prepending one new transition to the path. To select

such a transition, the algorithm creates a list of candidate transitions that can be be

prepended to the path. In the timing graph, these candidates are predecessor nodes

to the current tail of π. The list of candidate nodes is then sorted according to diffj,

the difficulty of creating the necessary conditions to justify the transition. Tab. 3.1

shows the formula used to compute diffj for each transition on each gate type. Note

that our difficulty metric is weighted to always prefer robust sensitization first, and

only resort to non-robust sensitization when there are no robustly sensitizable nodes in

the list of candidates. Whenever a node is prepended to π to create a candidate path

π′ (line 5) the sensitizability of π′ is checked by calling check-sensitizability function.

In this function SAT-based techniques [26] are used to check sensitizability of a path

and to find a vector pair that justifies and propagates a transition along the path

(line 6). If the SAT solver returns SAT, then path π′ is known to be a subpath of

a sensitizable path from PIs to POs. Because the candidates are visited in order of

preference, there is no need to check other candidates after finding a first candidate

that produces a sensitizable path. At this point, the algorithm updates π to be π′ and

the algorithm exits the for loop having extended the path by one node. If this newly

added tail node is not a PI, then the algorithm will again try to extend it backwards.

The forward propagation algorithm (Alg. 2) is similar to the aforementioned

backward propagation algorithm, except that it adds nodes to the head of the path

until reaching POs. At each step of the algorithm, a list of candidates is again formed.

In this case, the candidates are successors of the head of the path (line 2) instead of

predecessors of the tail, and they are ordered according to difficulty of propagation

(line 3) instead of difficulty of justification (See Tab. 3.2). Each time a new candidate

path is created by adding a candidate node to the existing path, a sat check is again
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Table 3.1: Computation of diffj for different gate types. In the case of 2-input gates,
we assume without loss of generality that input A is the on-path input and B is
the off-path input. The first two columns show the output transition, and the input
transition that we are trying to justify for this output transition. Columns 3-6 show
the values that the on-path input (A) and off-path input (B) must take in the first and
second cycles to justify the desired transition. The final column shows the formula to
compute diffj in terms of the controllability of the inputs.

output input A B
Diffj

trans. trans. v(1) v(2) v(1) v(2)

X = AND(A,B)
X ↓ A ↓ 1 0 1 1 C1(A) ∗ C0(A) ∗ C2

1 (B)
X ↑ A ↑ 0 1 - 1 C0(A) ∗ C1(A) ∗ C1(B)

X = OR(A,B)
X ↓ A ↓ 1 0 - 0 C1(A) ∗ C0(A) ∗ C0(B)
X ↑ A ↑ 0 1 0 0 C0(A) ∗ C1(A) ∗ C2

0 (B)

X = XOR(A,B)

X ↓ A ↓ 1 0 0 0 C1(A) ∗ C0(A) ∗ C2
0 (B)

X ↓ A ↑ 0 1 1 1 C0(A) ∗ C1(A) ∗ C2
1 (B)

X ↑ A ↑ 0 1 0 0 C0(A) ∗ C1(A) ∗ C2
0 (B)

X ↑ A ↓ 1 0 1 1 C1(A) ∗ C0(A) ∗ C2
1 (B)

X = BUFF(A)
X ↓ A ↓ 1 0 - - 1
X ↑ A ↑ 0 1 - - 1

X = INV(A)
X ↓ A ↑ 0 1 - - 1
X ↑ A ↓ 1 0 - - 1

Algorithm 1: Extend path backward to PIs while trying to maximize difficulty
of justification while ensuring that path will remain sensitizable.

Require: A sensitizable subpath π in timing graph of circuit.
Ensure: A longer sensitizable subpath π in timing graph that starts at a PI

1: while tail(π) /∈ PIs do
2: candidates← (∀n|n ∈ pred(tail(π))) {transitions that can be prepended to π}
3: candidates.order(diffj) {Order candidates by difficulty of justification}
4: for n′ ∈ candidates do
5: π′ ← (n′, π) {Create a candidate path by prepending current path}
6: if check-sensitizability(π′) = SAT then
7: π ← π′ {candidate accepted, update path π with new tail}
8: Exit for loop
9: end if

10: end for
11: end while
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Table 3.2: Computation of diffp for different gate types. In the case of 2-input gates,
we assume without loss of generality that input A is the on-path input and B is
the off-path input. The first two columns show the output transition, and the input
transition that we are trying to propagate for this on-path input transition. Columns
3-6 show the values that the output (X) and off-path input (B) must take in the first
and second cycles to propagate the desired transition. The final column shows the
formula to compute diffp in terms of the controllability of the off-path input and
observability of output.

output input X B
Diffp

trans. trans. v(1) v(2) v(1) v(2)

X = AND(A,B)
X ↓ A ↓ 1 0 1 1 OB1(X) ∗OB0(X) ∗ C2

1 (B)
X ↑ A ↑ 0 1 - 1 OB0(X) ∗OB1(X) ∗ C1(B)

X = OR(A,B)
X ↓ A ↓ 1 0 - 0 OB1(X) ∗OB0(X) ∗ C0(B)
X ↑ A ↑ 0 1 0 0 OB0(X) ∗OB1(X) ∗ C2

0 (B)

X = XOR(A,B)

X ↓ A ↓ 1 0 0 0 OB1(X) ∗OB0(X) ∗ C2
0 (B)

X ↓ A ↑ 1 0 1 1 OB1(X) ∗OB0(X) ∗ C2
1 (B)

X ↑ A ↑ 0 1 0 0 OB0(X) ∗OB1(X) ∗ C2
0 (B)

X ↑ A ↓ 0 1 1 1 OB0(X) ∗OB1(X) ∗ C2
1 (B)

X = BUFF(A)
X ↓ A ↓ 1 0 - - OB1(X) ∗OB0(X)
X ↑ A ↑ 0 1 - - OB0(X) ∗OB1(X)

X = INV(A)
X ↓ A ↑ 1 0 - - OB1(X) ∗OB0(X)
X ↑ A ↓ 0 1 - - OB0(X) ∗OB1(X)

performed to ensure that the nodes are only added to π if it remains sensitizable

(line 6).

3.4 Phase II: Delay Distribution

Once a path is selected, we must increase the delay of the path so that the total

path delay will exceed the clock period and an error will occur when the path is

sensitized. Yet, we must be careful in choosing where to add delay on the path,

because the gates along the chosen path are also part of many other intersecting or

overlapping paths. Any delay added to the chosen path therefore may cause errors

even when the chosen path is not sensitized. To ensure stealthiness, we must minimize

the probability of this by smartly deciding where to add delays along the path.

We use a genetic algorithm to decide the delay of each gate that will cause the

Trojan to be stealthy. Genetic algorithm is an optimization technique that tries to
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Algorithm 2: Extend path forward to POs while trying to maximize difficulty
of propagation while ensuring that path will remain sensitizable.

Require: A sensitizable subpath π in timing graph of circuit.
Ensure: A longer sensitizable subpath π in timing graph that ends at a PO

1: while head(π) /∈ POs do
2: candidates← (∀n|n ∈ succ(head(π))) {transitions that can be appended to π}
3: candidates.order(diffp) {Order candidates by difficulty of propagation}
4: for n′ ∈ candidates do
5: π′ ← (π, n′) {Create a candidate path by appending to current path}
6: if check-sensitizability(π′) = SAT then
7: π ← π′ {candidate accepted, update path π with new head}
8: Exit for loop
9: end if

10: end for
11: end while

minimize a cost function by creating a population of random solutions, and repeatedly

selecting the best solutions in the population and combining and mutating them to

create new solutions; the quality of each solution is evaluated according to a fitness

function. We use the genetic algorithm function ga in Matlab [1], and do not utilize

any special modifications to the genetic algorithm implementation. Our interaction

with the ga function is limited to providing constraints that restrict the allowed

solution space, and a fitness function for evaluating solutions. We describe these

constraints and fitness function here.

3.4.1 Constraint on Total Path Delay

Given a chosen path π comprising gates (p0, p1, . . . , pn) and assuming a target path

delay of D, the genetic algorithm decides the delay of each gate on the path. Our first

constraint therefore specifies that the sum of assigned delays along the path is equal

to the target path delay D. To cause an error, D must exceed the clock period, and

we later show advantages of using different values of D.

D =
n∑

i=0

di (3.1)
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3.4.2 Constraint on Delay of Each Gate

Next we provide the genetic algorithm with a hint that helps it to discover

reasonable delays for each gate. In this step, we use d′i to represent the nominal delay

of the ith gate on chosen path π, and si to represent the a slack metric associated with

the same gate. Each slack parameter si describes how much delay can be added to

the corresponding gate without causing the path to exceed the clock period. Because

the targeted path delay D does exceed the clock period, gate delays are allowed to

exceed their computed slack. The slack for each gate is computed as a function of

the nominal delay of the gate, data dependency, and the clock period [82] [29]. The

following equation shows the constraint on delay of gate i, where c is a constant.

d′i + si − c ≤ di ≤ d′i + si + c (3.2)

3.4.3 Fitness Function

Simply stated, the cost function that we want to minimize is the probability of

causing an error when random input vectors are applied to the circuit. Because there

is no simple closed-form expression for this, we use random simulation to evaluate

the cost of any delay assignment. When the genetic algorithm in Matlab needs to

evaluate the cost of a particular delay assignment, it does so by executing a timing

simulator. The timing simulator, in our case ModelSim, applies random vectors to the

circuit-under-evaluation and a golden copy of the circuit and compares the respective

outputs to count the number of errors that occur. These errors are caused by the

delay assignments in the circuit-under-evaluation. The cost that is returned from the

simulator is the percentage of inputs that caused an error for this delay assignment.

As the genetic algorithm proceeds through more and more generations of solutions, the

quality of the solutions improve. Matlab’s genetic algorithm implementation comes

with a stopping criterion, so we simply allow the algorithm to run until completion.
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3.5 Experimental Results

We now evaluate the effectiveness of our method of designing Trojans, using a

32× 32 Wallace tree multiplier as a test case. The circuit has a nominal critical path

of length 128, and the delay of this path is 2520 ps.

3.5.1 Evaluation of Phase I (Path Selection)

To evaluate the ability of our path selection algorithm (Sec. 3.3) to find a rare

path, we compare the stealthiness of the path selected by the algorithm against the

stealthiness of 750 randomly chosen paths. For each of these paths, we seek to find

how often an error would occur under random inputs if the path delay is increased.

We measure this by uniformly increasing the delay of each gate on the path such that

the total delay of the path is 5040 ps, which is twice the delay of the nominal critical

path. After the delay modification, 10,000 random vectors are applied and the number

of error-causing vectors is counted. The histogram of Fig. 3.4 shows the result; the

x-axis represents error rates, and the y-axis shows how many of the paths have each

error rate. The result shows that a majority of paths would cause frequent errors if

their delay is increased, and these paths are thus unsuitable for stealthy Trojans. The

rare path (RP) selected by our algorithm caused an error for only 4 of 10,000 vectors.

By comparison, the best of the random paths caused an error in 174 of 10,000 vectors.

In this experiment, the path chosen by the path selection algorithm is 43x less likely

to cause an error than the best of 750 random paths. Note that this experiment is

conservative in that the amount of additional delay added is very large, and the delay

is not smartly distributed along the path to minimize detection.

3.5.2 Evaluation of Phase II (Delay Distribution)

To evaluate the effectiveness of our delay distribution method, we apply the

proposed method (Sec. 3.4) on 10 paths from the multiplier. These 10 paths are the

rare path chosen by the path selection algorithm, and 9 paths randomly selected from

the set of all paths that caused less than 10% error rates in Fig. 3.4. For each of
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Figure 3.4: Fault simulation of rare path and 750 random paths of 32× 32 Wallace
tree multiplier.

Figure 3.5: Error probability of circuit before and after optimizing delay assignment
of rare path and 9 other paths in a 32× 32 Wallace tree multiplier.

these paths, we use the genetic algorithm to optimally allocate a total delay of 3276

ps (i.e. 1.3 times of the delay of the nominal critical path) over the path, and then

evaluate the error probability using random simulation with 5,000,000 vectors. Fig. 3.5

shows the error probability of each path before and after applying our proposed delay

distribution method. In each case, the optimization step reduces the probability of
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causing an error by at least 3.5x. For the rare path (RP), just one error in 5,000,000

vectors is caused after delay distribution. This result shows that, for a given total

path delay, optimizing the delay assignment along the path can reduce the probability

of having an error when random vectors are applied. It is important to note that this

improvement in stealthiness comes from minimizing the side effects of the added delay,

and does not impact triggerability when vectors are applied that actually sensitize the

entire chosen path.

3.5.3 Overall Evaluation

We evaluate our overall methodology comprising path selection and delay distribu-

tion on the 32× 32 Wallace Tree multiplier circuit. Instead of assuming a particular

clock frequency, here we examine whether it is possible to add delay to the chosen rare

path such that the circuit will (1) exceed the nominal critical path delay of 2520 ps

when the applied input sensitizes the rare path, and (2) always have delay of less than

2520 ps otherwise. We first distribute delay uniformly over the path, and then apply

the same total delay to the path but distribute it using the genetic algorithm (Sec. 3.4).

The results are shown in Tab. 3.3. Despite simulating 260 million random vectors, we

are unable to randomly discover any vectors in which the circuit delay exceeds 2520

ps. Yet, when applying a vector pair produced by our SAT-based sensitization check,

we observe that the chosen path delay does exceed 2520 ps. As simulating 260 million

vectors on a circuit this size already used more than 240 hours of computation on an

AMD Opteron(TM) Processor running at 2.3GHz with 8 cores and 64 GB RAM, it

will become quite expensive to check increasing numbers of vectors beyond 260 million.

This highlights a significant challenge: given a space of 2128 possible vector pairs that

might cause an error, it is very hard to estimate the probability of an error that is

sufficiently rare. If the probability of error is around or above roughly 2−26, then

random simulation will suffice to find a few errors and estimate the error probability.

If the probability of error is below roughly 2−98 it would be possible to use SAT to
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exhaustively enumerate all 230 vectors that would cause an error. Unfortunately, for

very interesting region of error probabilities between 2−26 and 2−98 there is no clear

solution for estimating the error probabilities.

When the amount of delay added to the rare path is increased, and the probability

of error grows above 2−26, the error probability can feasibly be estimated with random

simulation. In this regime, we can evaluate the tradeoff of delay and trigger probability.

For example, when the chosen path is given a total delay of 3150 ps allocated using

genetic algorithm for delay distribution, and the circuit is operated at a clock period

of 2800 ps (as might be reasonable for a nominal critical path of 2520 ps) an erroneous

output occurs with probability of roughly 2−24 (once every 16 million multiplications)

when random inputs are applied. The overall tradeoff is shown in Fig. 3.6 for different

clock periods. One can exploit this tradeoff to create a desired error probability by

increasing or decreasing the total amount of delay added to the chosen path.

Table 3.3: Probability of exceeding the nominal critical path delay in a 32×32 Wallace
Tree Multiplier after adding delay to the rare path. When uniformly distributing
the delay over the path, the longest delay exceeds 2520 ps for 57 of 200,000 random
applied vectors. After using genetic algorithm (Sec. 3.4) to distribute the delay, the
circuit delay never exceeds 2520 ps in 260 million random vectors.

Delay Distribution
Uniform GA

num. of times exceeding 2520 ps 57 0
num. of random vectors applied 200,000 260M

prob. of exceeding 2520 ps 0.0003 < 2−26

3.6 Bug Attack On ECDH with a Trojan Multiplier

The main motivation of choosing a multiplier as our case study is the bug attack

paper by Biham et el. [10, 11]. They showed how several public key implementations

can be attacked if the used multiplier computes a faulty response for some rare inputs.

The real-world implications of bug attacks were first demonstrated by Brumley et el.

in 2012 when they showed how a software bug in an implementation of the reduction
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Figure 3.6: Increasing the rare path delay increases the probability of causing an error
when random vectors are applied. This delay is allocated to gates according to the
delay distribution algorithm. The results are shown for different clock periods.

step of an elliptic curve group operation in OpenSSL could be exploited to recover

private ECDH-TLS server keys [21]. Note that while they exploited a software bug as

opposed to a hardware bug and a modular reduction as opposed to a multiplication,

the attack idea itself is the same as in the original bug attack paper [10].

3.6.1 Fault Model of the Trojan Multiplier

The Trojan Multiplier introduced in the precious Section has a different fault

model than the one assumed in [10]. In particular, the output of the Trojan Multiplier

does not only depend on the current input but also on the previous inputs, i.e., it

has a state. We define the multiplication of two 32-bit numbers a1, b1 with our

Trojan Multiplier as ỹ = MULa0,b0(a1, b1) where a0, b0 is the previous input pair to

the multiplier. The list F of quadruples (a0, b0, a1, b1) are all input sequences for which

the Trojan Multiplier computes a faulty response:

For all (a0, b0, a1, b1) ∈ F : ỹ = MULa0,b0(a1, b1) 6= y = a1 · b1

For all (a0, b0, a1, b1) /∈ F : ỹ = MULa0,b0(a1, b1) = y = a1 · b1
(3.3)

Outputs computed with the Trojan Multiplier are always represented with a tilde. An

ECC scalar multiplication of point Q ∈ E with an integer k is denoted as R = k ·Q.

An elliptic curve scalar multiplication using the Trojan Multiplier is denoted with an
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�, i.e., R̃ = k �Q. In the following we assume that an attacker has knowledge of the

Trojan Multiplier or access to a chip with the Trojan Multiplier such that the attacker

knows for which inputs R̃ 6= R.

The attack complexity strongly depends on the probability that a multiplication

results in a faulty response. In order to be able to compute this probability we make

following definitions:

1. PM(a1,b1): Probability that for two random 32-bit integers a1, b1 there exits at

least one pair of 32-bit integers a0, b0 such that ỹ = MULa0,b0(a1, b1) computes

a faulty response

2. PM(a1): Probability that for a random 32-bit integers a1 there exits at least one

triplet of 32-bit integers a0, b0, b1 such that ỹ = MULa0,b0(a1, b1) computes a

faulty response. Probability PM(b1) is defined in the same fashion.

3. PM(a0,b0|a1,b1): Probability that for two random 32-bit integers a0, b0 and two given

integers a1, b1 the multiplication ỹ = MULa0,b0(a1, b1) computes a faulty response

if there exists at least one other input pair a′0, b
′
0 for which ỹ = MULa′0,b

′
0
(a1, b1)

computes a faulty response

4. PM(a0|a1,b1=b0): Probability that for a random 32-bit integers a0, and two given

integers a1, b1 the multiplication ỹ = MULa0,b0(a1, b1) with b0 = b1 computes

a faulty response if there exists at least one other input pair a′0, b
′
0 for which

ỹ = MULa′0,b
′
0
(a1, b1) computes a faulty response

Furthermore, we make following assumptions regarding these probabilities for the

Trojan Multiplier :

1. PM(a1) ≈ PM(b1) and PM(a1,b1) = PM(a1) · PM(b1)

2. PM(a0,b0|a1,b1) ≈ 0.09

3. PM(a0|a1,b1=b0) ≈ 0.18
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Assumption (1) follows from the fact that both inputs have the same impact on

the propagation path of the signal. Hence it is reasonable that both values are

equally important to determine if a multiplication fails. Assumption (2) is based on

experimental results in which 892 out of 10,000 multiplication failed when a0 and

b0 are changed randomly while keeping a1,b1 constant. Assumption (3) is based on

a similar experiment in which 1813 out of 10,000 multiplication failed when a0 was

changed randomly and b0 was fixed to b0 = b1 and a1 was kept constant as well.

3.6.2 Case Study: An ECDH implementation with Montgomery Ladder

For our case study we assume a 255-bit ECDH key agreement with a static public

key. Furthermore, we assume the implementation uses the Montgomery Ladder scalar

multiplication. The ECDH key agreement works as follows: Given are a standardized

public curve E (e.g. Curve25519) and the point G ∈ E. The private key of the

server is a 255 bit integer ks and the corresponding public key is Qs = ks · G. The

key agreement is started by the client by choosing a random 255-bit integer kc and

computing Qc = kc ·G. The client sends Qc to the server and computes the shared key

R = ks ·Qs. The server computes the shared secret key R using Qc and his secret key

ks by computing R = kS ·Qc. Usually, the key agreement is followed by a handshake

to ensure that both the client and the server are now in possession of the same shared

session key R.

The general idea of the bug attack is that the attacker makes a key guess of the

first l bits of the secret key Ks. Then the attacker searches for a point Q = m ·G such

that the scalar multiplication R̃ = ks �Q results in a failure if, and only if, the most

significant bits of ks are indeed the l bits the attacker guessed. The attacker then

sends Q to the server and completes the ECDH key exchange protocol by making

a handshake with the shared key R = m ·Qs. If this handshake fails, the expected

multiplication error in the Trojan Multiplier has occurred and hence, the attacker

knows that his key guess is correct. This way more and more bits of the key are
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recovered consecutively. In the Montgomery Ladder scalar multiplication only one bit

of the key is processed in each ladder step and the attack works as follows:

1. Input: Elliptic curve E with point G ∈ E and public server key Qs ∈ E

2. Initialization: Set k = 1(2)

3. Repeat for key bit 2 to 255:

(a) Define k0 = k||0(2) [Append a zero to the key k]

(b) Define k1 = k||1(2) [Append a one to the key k]

(c) Repeatedly choose a value m and compute Q = m ·G until:

(P̃i = ki �Q) 6= (Pi = ki ·Q) for i ∈ {0, 1}

(P̃j = kj �Q) = (Pj = kj ·Q) for j 6= i, j ∈ {0, 1}

(d) Send Q to the server and complete handshake with R = m ·Qs

(e) If handshake failed, set k = ki, else set k = kj

The attack described above is a straight forward adaption of the bug attack from [21].

However, in the Trojan multiplier scenario the attack can be improved significantly by

adding a precomputation step. The main idea is to not use randomly generated points

Q in step 3.c) but to use points Q in which the x-coordinate Qx contains a b1 for

which the Trojan Multiplier ỹ = MULa0,b0(a1, b1) has a high chance to return a faulty

response. That is, b1 is one of the inputs for which the Trojan Multiplier fails. In each

step of the Montgomery Ladder algorithm, which is described in subsection 3.6.3, the

projective coordinate Z2 is computed with Z2 ← Z2 · Qx, hence, Qx, and therefore

also b1, is used in every ladder step. Furthermore, the value Z2 is different depending

on the currently processed key bit. Our improved attack targets this 255-bit integer

multiplication Z2 ·Qx to find a Q such that (P̃i 6= Pi) while (P̃j 6= Pj) as needed in

step 3.c) of the attack algorithm.

Unfortunately, the attacker cannot freely choose Q since the attacker needs to know

m such that Q = m ·G to finish the handshake. Instead of computing suitable points
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for each attack, we propose to search for t suitable points Q during a precomputation

step as described below:

1. Input: Elliptic curve E with point G ∈ E

2. Initialization: m = 1, Q = G

3. Repeat t times:

(a) m = m+ 1, Q = Q+G

(b) If Qx contains b1, store m and Q in list L

To compute the probability that the 255-bit integer multiplication Z2 · Qx fails

the used multiplication algorithm is important. We assume that the schoolbook

multiplication is used. One 255-bit schoolbook multiplication consists of 64 multipli-

cations of which 8 have b1 as an operand. Since one of these multiplication is a 31-bit

multiplication and we assume that only 32-bit multiplications can trigger the Trojan,

7 32-bit multiplications with b1 that can trigger the Trojan are performed in each

ladder step. Furthermore, due to the FOR loops in the schoolbook multiplication,

in 6 of these 7 multiplications b0 = b1, i.e., the second operand in the multiplication

remains unchanged. Note that PM(a0|a1,b1=b0) ≈ 0.18 and hence this is actually not

a problem but rather helpful. The average number AQ of points Q that need to be

tested until a failure occurs for key bit 1 or 0 is therefore:

AQ =
1

2
· 1

PM(a1) · PM(a0|a1,b1=b0) · 6 + PM(a1) · PM(a0,b0|a1,b1) · 1

Let us assume that the attacker tries to find a point Q for key bit i. Since the

attacker searches for a fault in the last Montgomery Ladder step, for every point

Q the attacker needs to compute i − 2 Montgomery Ladder steps (for the first key

bit no step is needed) and then two Montgomery Ladder steps for key bit 1 and 0
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respectively to check if the multiplication fails. Hence, in total the attacker needs an

average of AM Montgomery Ladder steps to recover a 255 bit key:

AM =
255∑
i=2

(i · AQ) =
2552 + 255

2
· AQ ≈ 216 · AQ

To compute t points Q during the precomputation such that b1 is in Qx the attacker

needs in average AP = t · 1
PM(b1)

point additions. We chose t = 16 ·AQ which results in

a failure probability of ca. 3.3 · 10−8 which should be small enough for all reasonable

attack scenarios. Table 3.4 summarizes the attack complexity for our improved bug

attack with precomputation for different parameters for the Trojan Multiplier. To put

these numbers into perspective, the hardware implementation of curve25519 presented

in [75] can compute roughly 239.3 Montgomery Ladder steps per second on a Xilinx

Zynq 7020 FPGA. Hence, especially for a failure probability of PM(a1,b1) = 2−48 the

attack complexity of 239 Montgomery ladder steps (and 250 point additions that only

need to be done once) is quite practical in a real-world scenario. On the other hand,

the probability that the Trojan is triggered unintentionally during normal operation

is about 2−37 which is low enough to not cause problems (see subsection 3.6.3.1 for

details).

Table 3.4: Attack complexity of the proposed improved Bug Attack using the Trojan
Multiplier assuming a 256 bit curve.

PM(a1,b1) 2−64 2−48 2−32

Precomputation complexity (point additions) 266.8 250.8 234.8

Storage Requirement 14 PB 55 TB 215 GB

Attack complexity (scalar multiplications) 230.8 222.8 214.8

Attack complexity (Montgomery Ladder Steps) 246.8 238.8 230.8

3.6.3 Montgomery Ladder

To be able to compute the exact attack complexity the details of the Montgomery

Ladder are important to determine how many manipulations are performed in each
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step. Algorithm 3 and Algorithm 4 describe the details of the assumed Montgomery

Ladder implementation.

Algorithm 3: Montgomery Ladder

Input: A 255-bit scalar s and the x-coordinate Qx of Q ∈ E
Output: c-coordinate Px of point P ∈ E with P = s ·Q

1 X1 ← 1; Z1 ← 0; X3 ← Qx ; Z2 ← 1
2 for i← 254 downto 0 do
3 b← bit i of s
4 c← bit i− 1 of s for i < 254 else c← 0
5 if b⊕ c = 1 then
6 Swap(X1, X2)
7 Swap(Z1, Z2)

8 (X1, Z1, X2, Z2)← LADDERSTEP (Qx, X1, Z1, X2, Z2)

9 Px ← X1/Z1

10 return Px

Algorithm 4: LADDERSTEP of the Montgomery Ladder (for curve
25519)

Input: Qx, X1, Z1, X2, Z2

Output: X1, Z1, X2, Z2

1 T1 ← X2 + Z2

2 X1 ← X2 − Z2

3 Z2 ← X1 + Z1

4 X1 ← X1 − Z1

5 T1 ← T1 · Z2

6 X2 ← X2 · Z2

7 Z2 ← Z2 · Z2

8 X1 ← X1 ·X1

9 T2 ← Z2 −X1

10 Z1 ← T2 · a24

11 Z1 ← Z1 +X1

12 Z1 ← T2 · Z1

13 X1 ← Z2 ·X1

14 Z2 ← T1 −X2

15 Z2 ← Z2 · Z2

16 Z2 ← Z2 ·Qx

17 X2 ← T1 +X2

18 X2 ← X2 ·X2

19 return X1, Z1, X2, Z2

3.6.3.1 Computing the failure probability of a scalar multiplication

In this subsection we describe how the failure probability of a Montgomery Ladder

scalar multiplication with schoolbook multiplication on the Trojan Multiplier can be

compute. To compute the probability that the computation fails we fist compute

the probability that a computation does not fail. As noted previously, in a 255-

bit schoolbook integer multiplications with 32-bit word size, 64 multiplications are

performed. From this 64 multiplications, 49 multiplications are the multiplications
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of two 32-bit numbers, while 6 are 32-bit times 31-bit multiplications and one 31-bit

times 31-bit multiplications. We again assume that only 32-bit multiplications can

result in a faulty response. In 42 multiplications the second operand is the same as in

the previous multiplications and hence the probability that such a multiplication fails

is:

PM(a1,ab) · PM(a0|a1,b1=b0)

For 7 multiplications the failure probability is:

PM(a1,ab) · PM(a0,b1|a1,b1)

The probability that no failure occurs during one Montgomery Ladder step is therefore:

(1− PM(a1,ab))
42 · (1− PM(a0,b1|a1,b1))

7

A 255-bit scalar multiplication requires 254 Montgomery Ladder steps. Hence the

probability that a failure occurs is given by:

1− ((1− PM(a1,ab))
42 · (1− PM(a0,b1|a1,b1))

7)254
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CHAPTER 4

SIDE-CHANNEL HARDWARE TROJAN FOR
PROVABLY-SECURE SCA PROTECTED

IMPLEMENTATIONS

1In this work, we present a mechanism which shows how easily a stealthy hardware

Trojan can be inserted in a provably-secure side-channel analysis protected imple-

mentation. Once the Trojan is triggered, the malicious design exhibits exploitable

side-channel leakage leading to successful key recovery attacks. Such a Trojan does

not add or remove any logic (even a single gate) to the design which makes it very

hard to detect. In ASIC platforms, it is indeed inserted by subtle manipulations at

the sub-transistor level to modify the parameters of a few transistors. The same is

applicable on FPGA applications by changing the routing of particular signals without

any resource utilization overhead. The underlying concept is based on a secure masked

hardware implementation which does not exhibit any detectable leakage. However,

by running the device at a particular clock frequency one of the requirements of

the underlying masking scheme is not fulfilled anymore, i.e., the Trojan is triggered,

and the device’s side-channel leakage can be exploited. We apply our technique to a

threshold implementation of the PRESENT block cipher realized in FPGA platform

and two different CMOS technologies, and show that triggering the Trojan makes the

FPGA and ASICs vulnerable. Although as a case study we show an application of

our designed Trojan on the threshold implementation of the PRESENT cipher, our

methodology is a general approach and can be applied on any similar circuit.

1The research presented in this chapter was published in [27] and submitted to [33]. This research
is a joint work with Amir Moradi, Thorben Moos, and Maik Ender from Horst Gortz Institute for IT
Security, Ruhr Universit at Bochum, Germany.
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4.1 Technique

As explained in former section – by means of TI – it is possible to realize hardware

cryptographic devices secure against certain SCA attacks. Our goal is to provide a

certain situation that an SCA-secure device becomes insecure while it still operates

correctly. Such a dynamic transition from secure to insecure should be available and

known only to the Trojan attacker. To this end, we target the uniformity property of a

secure TI construction. More precisely, we plan to construct a secure and uniform TI

design which becomes non-uniform (and hence insecure) at particular environmental

conditions. In order to trigger the Trojan (or let say to provide such a particular

environmental conditions) for example we select higher clock frequency than the device

maximum operation frequency, or lower power supply than the device nominal supply

voltage. It should not be forgotten that under such conditions the underlying device

should still maintain its correct functionality.

To realize such a scenario – inspired from the stealthy parametric Trojan introduced

in Chapter 3 – we intentionally lengthen certain paths of a combinatorial circuit. This

is done in such a way that – by increasing the device clock frequency or lowering its

supply voltage – such paths become faulty earlier than the other paths. We would

achieve our goal if i) the faults cancel each others’ effect, i.e., the functionality of

the design is not altered, and ii) the design does not fulfill the uniformity property

anymore.

In order to explain our technique – for simplicity without loss of generality –

we focus on a 3-share TI construction. As explained in Section 2.3 – ignoring the

uniformity – achieving a non-complete shared function F∗(., ., .) of a given quadratic

function F(.) is straightforward. Focusing on one output bit of F(x), and representing

x by s input bits 〈xs, . . . , x1〉, we can write

Fi(〈xs, . . . , x1〉) =k0 ⊕ k1x1 ⊕ k2x2 ⊕ . . .⊕ ksxs⊕

k1,2x1x2 ⊕ k1,3x1x3 ⊕ . . .⊕ ks−1,sxs−1xs.
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The coefficients k0, . . . , ks−1,s ∈ {0, 1} form the Algebraic Normal Form (ANF) of the

quadratic function Fi : {0, 1}s → {0, 1}. By replacing every input bit xi by the sum of

three corresponding shares x1i ⊕ x2i ⊕ x3i , the remaining task is just to split the terms

in the ANF to three categories in such a way that each category is independent of one

share. This can be done by a method denoted by direct sharing [17] as

• F1
i (., .) contains the linear terms x2i and the quadratic terms x2ix

2
j and x2ix

3
j .

• F2
i (., .) contains the linear terms x3i and the quadratic terms x3ix

3
j and x3ix

1
j .

• F3
i (., .) contains the linear terms x1i and the quadratic terms x1ix

1
j and x1ix

2
j .

The same is independently applied on each output bit of F(.) and all three component

functions F1 (x2,x3), F2 (x3,x1), F3 (x1,x2) are constructed that fulfill the non-

completeness, but nothing about its uniformity can be said.

There are indeed two different ways to obtain a uniform TI construction:

• If s (the underlying function size) is small, i.e., s ≤ 5, it can be found that F(.)

is affine equivalent to which s-bit class. More precisely, there is a quadratic

class Q which can represent F as A′ ◦ Q ◦ A (see [18] for an algorithm to find

A and A′ given F and Q). A classification of such classes for s = 3 and s = 4

are shown in [17] and for s = 5 in [20]. Since the number of existing quadratic

classes are restricted, it can exhaustively be searched to find their uniform TI.

Note that while for many quadratic classes the direct sharing (explained above)

can reach to a uniform TI, for some quadratic classes no uniform TI exists unless

the class is represented by a composition of two other quadratic classes [17].

Supposing that Q∗(., ., .) is a uniform TI of Q(.), applying the affine functions

A′ and A accordingly on each input and output of the component function Q∗

would give a uniform TI of F(.):
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F1(x2,x3) =A′ ◦ Q1
(
A
(
x2
)
,A
(
x3
))
,

F2(x3,x1) =A′ ◦ Q2
(
A
(
x3
)
,A
(
x1
))
,

F3(x1,x2) =A′ ◦ Q3
(
A
(
x1
)
,A
(
x2
))
.

This scenario has been followed in several works, e.g., [63, 64, 76, 12, 16].

• Having a non-uniform TI construction, e.g., obtained by direct sharing, we

can add correction terms to the component functions in such a way that the

correctness and non-completeness properties are not altered, but the uniformity

may be achieved. For example, the linear terms x2i and/or the quadratic terms

x2ix
2
j as correction terms can be added to the same output bit of both component

functions F1 (x2,x3) and F3 (x1,x2). Addition of any correction term changes

the uniformity of the design. Hence, by repeating this process – up to examining

all possible correction terms and their combination, which is not feasible for

large functions – a uniform construction might be obtained. Such a process has

been conducted in [68, 13] to construct uniform TI of PRESENT and Keccak

non-linear functions.

We should here refer to a similar approach called remasking [62, 17] where –

instead of correction terms – fresh randomness is added to the output of the

component functions to make the outputs uniform. In this case, obviously a

certain number of fresh mask bits are required at every clock cycle (see [62, 15]).

Our technique is based on the second scheme explained above. If we make the paths

related to the correction terms the longest path, by increasing the clock frequency

such paths are the first whose delay are violated. As illustrated, each correction term

must be added to two component functions (see Figure 4.1). The paths must be very

carefully altered in such a way that the path delay of both instances of the targeted

correction term are the longest in the entire design and relatively the same. Hence, at

a particular clock frequency both instances of the correction terms are not correctly
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Figure 4.1: Exemplary TI construction with a correction term C.

calculated while all other parts of the design are fault free. This enables the design to

still work properly, i.e., it generates correct ciphertext assuming that the underlying

design realizes an encryption function. It means that the design operates like an

alternative design where no correction terms exists. Hence, the uniformity of the TI

construction is not fulfilled and SCA leakage can be exploited. To this end, we should

keep a margin between i) the path delay of the correction terms and ii) the critical

path delay of the rest of the circuit, i.e., that of the circuit without correction terms.

This margin guarantees that at a certain high clock frequency the correction terms

are canceled out but the critical path delay of the remaining circuit is not violated.

We would like to emphasize that in an implementation of a cipher once one of the

TI functions generates non-uniform output (by violating the delay of correction terms),

the uniformity is not maintained in the next TI functions and it leads to first-order

leakage in all further rounds. If the uniformity is achieved by remasking (e.g., in [37]),

the above-expressed technique can have the same effect by making the XOR with

fresh mask the longest path. Hence, violating its delay in one TI function would make

its output non-uniform, but the fresh randomness may make the further rounds of the

cipher again uniform.

Based on Figure 4.2, which shows a corresponding timing diagram, the device

status can be categorized into four states:
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Figure 4.2: Status of the design with Trojan at different clock frequencies.

• at a low clock frequency (denoted by 1 ) the device operates fault free and

maintains the uniformity,

• by increasing the clock frequency (in the 2 period), the circuit first starts to

become unstable, when indeed the correction terms do not fully cancel each

others’ effect, and the hold time and/or setup time of the registers are violated,

• by more increasing the clock frequency (in the 3 period), the delay of both

instances of the correction term are violated and the circuit operates fault free,

but does not maintain the uniformity, and

• by even more increasing the clock frequency (marked by 4 ) , the clock period

becomes smaller than the critical path delay of the rest of the circuit, and the

device does not operate correctly.

The aforementioned margin defines the length of the 2 period, which is of crucial

importance. If it is very wide, the maximum operation frequency of the resulting

circuit is obviously reduced, and the likelihood of the inserted Trojan to be detected

by an evaluator is increased.

Correct functionality of the circuit is requited to enable the device being operated

in the field. Otherwise, the faulty outputs might be detected (e.g., in a communication

protocol) and the device may stop operating and prevent collecting SCA traces.
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4.2 Application

In order to show an application of our technique, we focus on a first-order TI

design of PRESENT cipher [19] as a case study. The PRESENT S-Box is 4-bit

cubic bijection S : C56B90AD3EF84712. Hence, its first-order TI needs at least n = 4

shares. Alternatively, it can be decomposed to two quadratic bijections S : F ◦ G

enabling the minimum number of shares n = 3 at the cost of having extra register

between F∗ and G∗ (i.e., TI of F and G). As shown in [17], S is affine equivalent

to class C266 : 0123468A5BCFED97, which can be decomposed to quadratic bijections

with uniform TI. The works reported in [64, 76, 77] have followed this scenario and

represented the PRESENT S-Box as S : A′′ ◦ Q′ ◦ A′ ◦ Q ◦ A, with many possibilities

for the affine functions A′′, A′, A and the quadratic classes Q′ and Q whose uniform

TI can be obtained by direct sharing (see Section 4.1).

However, the first TI of PRESENT has been introduced in [68], where the authors

have decomposed the S-Box by G : 7E92B04D5CA1836F and F : 08B7A31C46F9ED52.

They have accordingly provided uniform TI of each of such 4-bit quadratic bijections.

We focus on this decomposition, and select G as the target where our Trojan is

implemented. Compared to all other related works, we first try to find a non-

uniform TI of G(.), and we later make it uniform by means of correction terms. We

start with the ANF of G(〈d, c, b, a〉) = 〈g3, g2, g1, g0〉:

g0 = 1⊕ a⊕ dc⊕ db⊕ cb, g2 = 1⊕ c⊕ b,

g1 = 1⊕ d⊕ b⊕ ca⊕ ba, g3 = c⊕ b⊕ a.

One possible sharing of y = G(x) can be represented by (y1,y2,y3) =

(G1 (x2,x3) ,G2 (x3,x1) ,G3 (x1,x2)) as
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y10 = 1⊕ a2 ⊕ d2c3 ⊕ d3c2 ⊕ d2b3 ⊕ d3b2 ⊕ c2b3 ⊕ c3b2 ⊕ d2c2 ⊕ d2b2 ⊕ c2b2,

y11 = 1⊕ b2 ⊕ d3 ⊕ c2a3 ⊕ c3a2 ⊕ b2a3 ⊕ b3a2 ⊕ c2a2 ⊕ b2a2,

y12 = 1⊕ c2 ⊕ b2, y13 = c2 ⊕ b2 ⊕ a2,

y20 = a3 ⊕ d3c3 ⊕ d1c3 ⊕ d3c1 ⊕ d3b3 ⊕ d1b3 ⊕ d3b1 ⊕ c3b3 ⊕ c1b3 ⊕ c3b1,

y21 = b3 ⊕ d1 ⊕ c1a3 ⊕ c3a1 ⊕ b1a3 ⊕ b3a1 ⊕ c3a3 ⊕ b3a3,

y22 = c3 ⊕ b3, y23 = c3 ⊕ b3 ⊕ a3,

y30 = a1 ⊕ d1c1 ⊕ d1c2 ⊕ d2c1 ⊕ d1b1 ⊕ d1b2 ⊕ d2b1 ⊕ c1b1 ⊕ c1b2 ⊕ c2b1,

y31 = b1 ⊕ d2 ⊕ c1a2 ⊕ c2a1 ⊕ b1a2 ⊕ b2a1 ⊕ c1a1 ⊕ b1a1,

y32 = c1 ⊕ b1, y33 = c1 ⊕ b1 ⊕ a1,

with xi∈{1,2,3} = 〈di, ci, bi, ai〉. This is not a uniform sharing of G(.), and by searching

through possible correction terms we found three correction terms c1b1, c2b2, and c3b3

to be added to the second bit of the above-expressed component functions, that lead

us to a uniform TI construction. More precisely, by defining

C1(x2,x3) = c2b2 ⊕ c3b3,

C2(x3,x1) = c1b1 ⊕ c3b3,

C3(x1,x2) = c1b1 ⊕ c2b2,

and adding them respectively to y11, y21, and y31, the resulting TI construction becomes

uniform. If any of such correction terms is omitted, the uniformity is not maintained.

In the following we focus on a single correction term c2b2 which should be added to

G1(., .) and G3(., .). A uniform sharing of F is given in the subsection4.2.1.
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4.2.1 Uniform TI of F

Considering y = F(x) and xi∈{1,2,3} = 〈di, ci, bi, ai〉 – derived by direct sharing – we

present one of its uniform sharing (y1,y2,y3) = (F1 (x2,x3) ,F2 (x3,x1) ,F3 (x1,x2))

as

y10 = b2 ⊕ c2a2 ⊕ c2a3 ⊕ c3a2,

y11 = c2 ⊕ b2 ⊕ d2a2 ⊕ d2a3 ⊕ d3a2,

y12 = d2 ⊕ b2a2 ⊕ b2a3 ⊕ b3a2,

y13 = c2 ⊕ b2 ⊕ a2 ⊕ d2a2 ⊕ d2a3 ⊕ d3a2,

y20 = b3 ⊕ c3a3 ⊕ c1a3 ⊕ c3a1,

y21 = c3 ⊕ b3 ⊕ d3a3 ⊕ d1a3 ⊕ d3a1,

y22 = d3 ⊕ b3a3 ⊕ b1a3 ⊕ b3a1,

y23 = c3 ⊕ b3 ⊕ a3 ⊕ d3a3 ⊕ d1a3 ⊕ d3a1,

y30 = b1 ⊕ c1a1 ⊕ c1a2 ⊕ c2a1,

y31 = c1 ⊕ b1 ⊕ d1a1 ⊕ d1a2 ⊕ d2a1,

y32 = d1 ⊕ b1a1 ⊕ b1a2 ⊕ b2a1,

y33 = c1 ⊕ b1 ⊕ a1 ⊕ d1a1 ⊕ d1a2 ⊕ d2a1.

4.2.2 Inserting the Trojan

We realize the Trojan functionality by path delay fault model, without modifying

the logic circuit. The Trojan is triggered by violating the delay of the combinatorial

logic paths that pass through the targeted correction terms c2b2. It is indeed a

parametric Trojan, which does not require any additional logic. The Trojan is inserted
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by modifying a few gates during manufacturing, so that their delay increase and add

up to the path delay faults.

Given in Chapter 3 , the underlying method to create a triggerable and stealthy

delay-based Trojan consists of two phases: path selection and delay distribution. In

the first phase, a set of uniquely-sensitized paths are found that passes through a

combinatorial circuit from primary inputs to the primary outputs. Controllability

and observability metrics are used to guide the selection of which gates to include

in the path to make sure that the path(s) are uniquely sensitized2. Furthermore, a

SAT-based check is performed to make sure that the path remains sensitizable each

time a gate is selected to be added to the path. After a set of uniquely-sensitized

paths is selected, the overall delay of the path(s) must be increased so that a delay

fault occurs when the path is sensitized. However, any delay added to the gates of the

selected path may also cause delay faults on intersecting paths, which would cause

undesirable errors and affect the functionality of the circuit. The delay distribution

phase addresses this problem by smartly choosing delays for each gate of the selected

path to minimize the number of faults caused by intersecting paths. At the same time,

the approach ensures that the overall path delay is sufficient for the selected paths to

make it faulty.

4.2.2.1 ASIC Platforms

In an ASIC platform, such Trojans are introduce by slightly modifications on

the sub-transistor level so that the parameters of a few transistors of the design

are changed. To increase the delays of transistors in stealthy ways, there are many

possible ways in practice. However, such Trojan is very difficult to be detected by

e.g., functional testing, visual inspection, and side-channel profiling, because not a

single transistor is removed or added to the design and the changes to the individual

2Meaning that the selected paths are the only ones in the circuit whose critical delay can be
violated.
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gates are minor. Also, full reverse-engineering of the IC would unlikely reveal the

presence of the malicious manipulation in the design. Furthermore, this Trojan would

not present at higher abstraction levels and hence cannot be detected at those levels,

because the actual Trojan is inserted at the sub-transistor level.

A path delay fault in a design is sensitized by a sequence of (at least two) consecutive

input vectors on consecutive clock cycles. Its reason is charging/discharging of output

capacitances of gates of the path. The delay of each gate is determined by its

speed in charging or discharging of its output capacitance. Therefore, if the state of

the capacitances of gates (belonging to the targeted path) is not changed (i.e., the

capacitances do not charge or discharge), the effect of the path delay fault cannot be

propagated along the path. Therefore, to trigger the path delay fault, the consecutive

input vectors should change the state of the capacitances of the targeted path.

There are several stealthy ways to change slightly the parameters of transistors

of a gate and make it slower in charging/discharging its output capacitance (load

capacitance). Exemplary, we list three methods below.

4.2.2.1.1 Decrease the Width Usually a standard cell library has different

drive strengths for each logic gate type, which correspond to various transistor widths.

Current of a transistor is linearly proportional to the transistor width, therefore a

transistor with smaller width is slower to charge its load capacitance. One way to

increase the delay of a gate is to substitute it with its weaker version in the library

which has smaller width, or to create a custom version of the gate with a narrow

width, if the lower level information of the gate is available in the library (e.g., SPICE

model). The problem here is that an inspector who test the IC optically, may detect

the gate downsizing depending on how much the geometry has been changed.

4.2.2.1.2 Raise the Threshold A common way of increasing delay of a gate is to

increase the threshold voltage of its transistors by body biasing or doping manipulation.

Using high and low threshold voltages at the same time in a design (i.e., Dual-Vt

48



design ) is very common approach and provides for designer to have more options

to satisfy the speed goals of the design. Devices with low threshold voltage are fast

and used where delay is critical; devices with high threshold voltage are slow and

used where power consumption is important. Body biasing can change the threshold

voltage and hence the delay of a gate through changing the voltage between body and

source of the transistor [42]. A reverse body bias in which body is at lower voltage

than the source, increases the threshold voltage and makes the device slow. In general,

transistors with high threshold voltage will response later when an input switches,

and conduct less current. Therefore, the load capacitances of the transistors will be

charged or discharged more slowly. Dopant manipulation and body biasing, are both

very difficult to detect.

4.2.2.1.3 Increase the Gate Length Gate length biasing can increase delay of

a gate by reducing the current of its transistors [39]. The likelihood of detection of

this kind of manipulation depends on the degree of the modification.

4.2.2.2 FPGA Platforms

In case of the FPGAs, the combinatorial circuits are realized by Look-Up Tables

(LUT), in currently-available Xilinx FPGAs, by 6-to-1 or 5-to-2 LUTs and in former

generations by 4-to-1 LUTs. The delay of the LUTs cannot be changed by the end

users; alternatively we offer the following techniques to make certain paths longer.

4.2.2.2.1 Through Switch Boxes The routings in FPGA devices are made by

configuring the switch boxes. Since the switch boxes are made by active components

realizing logical switches, a signal which passes through many switch boxes has a

longer delay compared to a short signal. Therefore, given a fully placed-and-routed

design we can modify the routings by lengthening the selected signals. This is for

example feasible by means of Vivado Design Suite as a standard tool provided by

Xilinx for recent FPGA families and FPGA Editor for the older generations. It is in
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fact needs a high level of expertise, and cannot be done at HDL level. Interestingly,

the resulting circuit would not have any additional resource consumption, i.e., the

number of utilized LUTs, FFs and Slices, hence hard to detect particularly if the

utilization reports are compared.

4.2.2.2.2 Through route-thrus LUTs Alternatively, the LUTs can be config-

ured as logical buffer. This, which is called route-thrus, is a usual technique applied by

Xilinx tools to enable routing of non-straightforward routes. Inserting a route-thrus

LUT into any path, makes its delay longer. Hence, another feasible way to insert

Trojans by delay path fault is to introduce as many as required route-thrus LUTs

into the targeted path. It should be noted that the malicious design would have more

LUT utilization compared to the original design, and it may increase the chance of

being detected by a Trojan inspector. However, none of such extra LUTs realizes a

logic, and all of them are seen as route-thrus LUTs which are very often (almost in

any design) inserted by the FPGA vendor’s place-and-route tools. Compared to the

previous method, this can be done at HDL level (by hard instantiating route-thrus

LUTs).

Focusing on our target, i.e., correction term c2b2 in G1(., .) and G3(., .), by applying

the above-explained procedure, we found the situation which enables introducing delay

path fault into such routes:

• Considering Figure 4.1, the XOR gate which receives the F1 and C output should

be the last gate in the combinatorial circuit generating y11, i.e., the second bit of

G1(., .). The same holds for y31, i.e., the second bit of G3(., .).

• The only paths which should be lengthened are both instances of c2b2. Therefore,

in case of the FPGA platform we followed both above-explained methods to

lengthen such paths, i.e., between i) the output of the LUT generating c2b2 and

ii) the input of the aforementioned final XOR gate.
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We have easily applied the second method (through route-thrus LUTs) at the HDL

level by instantiating a couple of LUTs as buffer between the selected path. More

detailed results with respect to the number of required route-thrus LUTs and the

achieved frequencies to trigger the Trojan are shown in next Section 5.5.

For the first method (through switch boxes) – since our target platform is a

Spartan-6 FPGA – we made use of FPGA Editor to manually modify the selected

routes. Fig.4.3 shows two routes of a signal with different length.

We should emphasize that this approach is possible if the correction term c2b2 is

realized by a unique LUT (can be forced at HDL level by hard instantiating or placing

such a module in a deeper hierarchy). Otherwise, the logic generating c2b2 might be

merged with other logic into a LUT, which avoids having a separate path between

c2b2 and a LUT that realizes the final XOR gate.

4.3 ASIC Implementation

For ASIC platforms, we utilize the stealthy parametric Trojan introduced in

Chapter 3. It consists of two main phases: path selection phase and delay distribution

phase. We briefly explain each of these phases in Subsections 4.3.1 and 4.3.2. Our

goal is to make the paths related to our target correction term, which is added to two

component functions, the longest so that by increasing the clock frequency such paths

are the first whose delays are violated. The paths must be very carefully selected and

altered in such a way that the path delay of both instances of the targeted correction

term are the longest in the entire design and relatively the same. Hence, at a particular

clock frequency both instances of the correction terms are not correctly calculated

while all other parts of the design are fault free. This enables the design to still work

properly.

4.3.1 Rare Path Selection Phase

The path selection phase seeks to find a path π through the netlist of the circuit

that passes through the targeted correction term. Note that the delays are not
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Figure 4.3: Two routes of the same signal in a Spartan-6 FPGA, manually perfromed
by FPGA Editor.
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considered in this phase of the work. Path π is initialized to contain a transition on

the targeted correction term node. This initial single-node path π is then extended

incrementally backward until reaching the primary inputs, and extended incrementally

forward until reaching the primary outputs. The path selection algorithm is given in

Alg. 5. Starting from the first transition on the current path π, we repeatedly try to

Algorithm 5: Extracting a hard to trigger sentisizable path passing through a
specific node.
Require: A single node π in the netlist of the circuit
Ensure: A sensitizable path π starting at a primary input and ending at a primary output
1: while (π does not start at a primary input) do
2: new node candidates = {All transitions that can be prepended to π}
3: Order new node candidates by difficulty of justification.
4: for (each member n′ of new node candidates) do
5: new subpath π′ = prepend n′ to the tail of π
6: if (check-SAT(π′)) then
7: π = π′

8: Exit for loop.
9: end if

10: end for
11: end while
12: while (π does not end at a primary output) do
13: new node candidates = {ALL transitions that can be appended to π}
14: Order new node candidates by difficulty of propagation.
15: for (each member n′ of new node candidates) do
16: new subpath π′ = append n′ to the head of π
17: if (check-SAT(π′)) then
18: π = π′

19: Exit for loop.
20: end if
21: end for
22: end while

extend the path back toward the PIs by prepending one new transition to the path.

To select such a transition, the algorithm creates a list of candidate transitions that

can be prepended to the path, which is sorted according to the difficulty of creating

the necessary conditions to justify the transition. Whenever a node is prepended to π

to create a candidate path π′, the sensitizability of π′ is checked by calling check-SAT

function. In this function SAT-based techniques [26] are used to check sensitizability

of the path If the SAT solver returns SAT, then path π′ is known to be a subpath of a
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sensitizable path from a primary input to a primary output. If this newly added tail

node is not a primary input, then the algorithm will again try to extend it backwards.

The forward propagation part is similar to the aforementioned backward propa-

gation, except that it adds nodes to the head of the path until reaching a primary

output. At each step of the algorithm, a list of candidates is again formed. In this

case, they are ordered according to difficulty of propagation instead of difficulty of

justification. Each time a new candidate path is created by adding a candidate node

to the existing path, a SAT check is again performed to ensure that the nodes are

only added to π if it remains sensitizable.

4.3.2 Delay Distribution Phase

Once paths are selected, the delay of them must be increased so that the total

path delays exceed the clock period and errors occur when the paths are sensitized.

Choosing where to add delay on the paths must be done carefully, because the gates

along the chosen paths are also part of many other intersecting or overlapping paths.

Any delay added to the chosen paths therefore may cause errors even when the chosen

paths are not sensitized. Genetic algorithm is used to smartly decide the delay of each

gate along with some constraints to restrict the allowed solution space, and a fitness

function for evaluating solutions.

Total Path Delay Constraint: Assume each of the chosen paths π includes n gates

and target path delay is D. This constraint specifies that the sum of assigned delays

along the path is equal to the target path delay D. To cause an error, D must exceed

the period 4 .

D =
n∑

i=0

di (4.1)

Gate Delay Constraint: Assume d′i represents the nominal delay of the ith gate on

the chosen path π, and si represents the slack metric associated with the same gate.

Each slack parameter si describes how much delay can be added to the corresponding

gate without causing the path to exceed the period 4 . The slack for each gate is
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computed as a function of the nominal delay of the gate, data dependency, and the

clock period [29, 82]. Because the targeted path delay D does exceed the period 4 ,

gate delays are allowed to exceed their computed slack. The following equation shows

this constraint where c is a constant.

d′i + si − c ≤ di ≤ d′i + si + c (4.2)

Fitness Function: The cost function consists two parts; i) the faults cancel each

others’ effect, i.e., the faults on targeted correction term in two functions G1 and G3

are happen at the same time and cancel the effect of each others so the functionality

of the design is not altered, and ii) the design does not fulfill the uniformity property

anymore. To cover both cases in our final cost function we define it as the following

equation in which first term corresponds to case (i) and the second term corresponds

to case (ii). Our goal is to minimize this cost function.

CostF (d1, ..., dn) = ErrorRatedesign + 1/ErrorRateG1 and G3 (4.3)

We use random simulation to evaluate the cost of any delay assignment. When

the genetic algorithm in Matlab [1] needs to evaluate the cost of a particular delay

assignment, it does so by executing a timing simulator. The timing simulator, in our

case ModelSim, applies test vectors to the circuit-under-evaluation and a golden copy

of the circuit and compares the respective outputs to count the number of errors.

4.4 FPGA Practical Results

4.4.1 Design Architecture

We made use of the above-explained malicious PRESENT TI S-Box in a design

with full encryption functionality. The underlying design is similar to the Profile 2

of [68], where only one instance of the S-Box is implemented. The nibbles are serially
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Figure 4.4: Design architecture of the PRESENT TI as the case study.

shifted through the state register as well as through the S-Box module while the

PLayer is performed in parallel in one clock cycle. Following its underlying first-order

TI, the 64-bit plaintext is provided by three shares, i.e., second-order Boolean masking,

while the 80-bit key is not shared (similar to that of [68] and [15]). Figure 4.4 shows an

overview of the design architecture, which needs 527 clock cycles for a full encryption

after the plaintext and key are serially shifted into the state (resp. key) registers.

We should here emphasize that the underlying TI construction is a first-order

masking, which can provably provide security against first-order SCA attacks. However,

higher-order attacks are expected to exploit the leakage, but they are sensitive to

noise [70] since accurately estimating higher-order statistical moments needs huge

amount of samples compared to lower-order moments. It is indeed widely known that

such masking schemes should be combined with hiding techniques (to reduce the SNR)

to practically harden (hopefully disable) the higher-order attacks. As an example we

can refer to [64], where a TI construction is implemented by a power-equalization

technique. We instead integrated a noise generator module into our target FPGA

to increase the noise and hence decrease the SNR. The details of the integrated

noise generator module is given in subsection4.4.2. Note that without such a noise

generator module, our design would be vulnerable to higher-order attacks and no
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Trojan would be required to reveal the secret. Therefore, the existence of such a

hiding countermeasure to make higher-order attacks practically hard is essential.

The design is implemented on a Spartan-6 FPGA board SAKURA-G, as a platform

for SCA evaluations [2]. In order to supply the PRESENT core with a high clock

frequency, a Digital Clock Manager (DCM) has been instantiated in the target FPGA

to multiply the incoming clock by a factor of 8. The external clock was provided by a

laboratory adjustable signal generator to enable evaluating the design under different

high clock frequencies.

Table 4.1 shows the resource utilization (excluding the noise generator) as well

as the achieved margins for the clock frequency considering i) the original design, ii)

malicious design made by through switch boxes method and iii) malicious design made

by through route-thrus LUTs technique. It is noticeable that the first malicious design

does not change the utilization figures at all since lengthening the routes are done

only through the switch boxes (see Fig.4.3). Using the second method – in order to

achieve the same frequency margins – we added 4 route-thru LUTs (at the HDL level)

to each path of the targeted correction term. This led to 8 extra LUT utilization and

4 more Slices; we would like to mention that the combinatorial circuit of the entire TI

S-Box (both G∗ F∗) would fit into 29 LUTs (excluding the route-thru ones).

Regarding the frequency ranges, shown in Table 4.1, it can be seen that the

maximum clock frequency of the malicious design is decreased from 219.2 MHz to

196 MHz, i.e., around 10% reduction. However, both 2 and 3 periods are very

narrow, that makes it hard to be detected either by a Trojan inspector or by an SCA

evaluator.

4.4.2 Noise Generator

We have built a noise generator as an independent module, i.e., it does not have

any connection to the target PRESENT design and operates independently. We

followed one the concepts introduced in [38]. As shown by Figure 4.5, it is made as
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Table 4.1: Performance figure of our PRESENT-80 encryption designs.

Design Method

Utilization

FF LUT Slice Frequency

logic route-thrus [MHz]

Original - 299 291 35 226
1

219.2

4

2 134

196219.2

212.8

Malicious switch box 299 291 35 226

Malicious route-thru LUT 299 291 43 230

a combination of a ring oscillator, an LFSR, and several shift registers. The actual

power is consumed by the shift registers. Every shift register instantiates a SRLC32E

primitive, which is a 32-bit shift register within a single LUT inside a SLICEM. The

shift registers are initialized with the consecutive values of 01. Every shift register’s

output is feedback to its input and shifted by one at every clock cycle when enabled.

Thus, every shift operation toggles the entire bits inside the registers, which maximizes

the power consumption of the shift register.

The ring oscillator, made of 31 inverter LUTs, acts as the clock source inside

the noise module for both the LFSR and the shift registers. The LFSR realizes the

irreducible polynomial x19 + x18 + x17 + x14 + 1 to generate a pseudo-random clock

enable signal for the shift registers.

We instantiated 4 × 8 instances of the shift register LUTs, fitting into 8 Slices.

The ring oscillator required 17 Slices (as stated, made of 31 inverters), and the LFSR

fits into 2 Slices, made by 1 LUT for the feedback function, 2 FFs and 2 shift register

LUTs. Overall, the entire independent noise generator module required 27 Slices.
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Figure 4.5: Block diagram of the noise generator.

4.4.3 SCA Evaluations

4.4.3.1 Measurement Setup.

For SCA evaluations we collected power consumption traces (at the Vdd path) of

the target FPGA by means of a digital oscilloscope at sampling rate of 1GS/s. It might

be thought that when the target design runs at a high frequency > 150 MHz, such

a sampling rate does not suffice to capture all leaking information. However, power

consumption traces are already filtered due to the PCB, shunt resistor, measurement

setup, etc. Hence, higher sampling rate for such a setting does not improve the attack

efficiency3, and often the bandwidth of the oscilloscope is even manually limited for

noise reduction purposes (see [69]).

4.4.3.2 Methodology.

In order to examine the SCA resistance of our design(s) in both settings, i.e.,

whether the inserted Trojan is triggered or not, we conducted two evaluation schemes.

We first performed non-specific t-test (fixed versus random) [78, 34] to examine the

existence of detectable leakage. Later in case where the Trojan is triggered, we also

conduct key-recovery attacks.

3It is not the case for EM-based analyses.
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It should be mentioned that both of our malicious designs (see Table 4.1) operate

similarly. It means that when the Trojan is triggered, the evaluation of both designs

led to the same results. Therefore, below we exemplary show the result of the one

formed by through route-thrus LUTs.

To validate the setup, we start with a non-specific t-test when the PRNG of the

target design (used to share the plaintext for the TI PRESENT encryption) is turned

off, i.e., generating always zero instead of random numbers. To this end, we collected

100,000 traces when the design is operated at 168 MHz, i.e., the Trojan is not triggered.

We followed the concept given in [78] for the collection of traces belonging to fixed

and random inputs. The result of the t-test (up to third-order) is shown in Figure 4.6,

confirming the validity of the setup and the developed evaluation tools.

To repeat the same process when the PRNG is turned on, i.e., the masks for initial

sharing of the plaintext are uniformly distributed, we collected 100,000,000 traces

for non-specific t-test evaluations. In this case, the device still operates at 168 MHz,

i.e., the Trojan is not triggered. The corresponding results are shown in Figure 4.7.

Although the underlying design is a realization of a first-order secure TI, it can be

seen from the presented results that second- and third-order leakages are also not

detectable. As stated before, this is due to the integration of the noise generator

module which affects the detectability of higher-order leakages (see subsection4.4.2).

As the last step, the same scenario is repeated when the clock frequency is increased

to 216 MHz, where the design is in the 3 period, i.e., with correct functionality and

without uniformity. Similar to the previous experiment, we collected 100,000,000

traces for a non-specific t-test, whose results are shown in Figure 4.8. As shown by the

graphics, there is detectable leakage through all statistical moments but with lower

t-statistics compared to the case with PRNG off. Therefore, we have also examine

the feasibility of key recovery attacks. To this end, we made use of those collected

traces which are associated with random inputs, i.e., around 50,000,000 traces of

the last non-specific t-test. We conducted several different CPA and DPA attacks
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Figure 4.6: PRNG off, clock 168 MHz (Trojan not triggered), (top) a sample power
trace, t-test results (right) with 100,000 traces, (left) absolute maximum over the
number of traces.
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Figure 4.7: PRNG on, clock 168 MHz (Trojan not triggered), t-test results (right)
with 100,000,000 traces, (left) absolute maximum over the number of traces.
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considering intermediate values of the underlying PRESENT encryption function. The

most successful attack was recognized as classical DPA attacks [48] targeting a key

nibble by predicting an S-Box output bit at the first round of the encryption. As an

example, Figure 4.9 presents an exemplary corresponding result.

4.5 ASIC Practical Results

In this section we describe how we have designed and implemented first ASIC

prototypes incorporating such a malicious design. We then verify that the resulting

chips are indeed resistant against side-channel attacks when the Trojan is not triggered

and that this resistance can be nullified when triggering it.

Section 4.4 demonstrated by practical experiments that the proposed hardware

Trojan and the presented implementation techniques are valid on FPGA-based plat-

forms. Here, we aim to provide a similar case study, but with respect to ASIC

platforms. In this regard we carried out the described design stages and implemented

the trojanized PRESENT threshold implementation circuit in two different process

technologies,90 nm and 65 nm low power CMOS. Both ASICs, which can be seen in

Figure 4.10, were developed using an identical design procedure, including the usage

of low, high and standard threshold voltage cells, and were manufactured by the same

foundry.

The size of both chips is 2mm x 2mm. The side-channel resistant PRESENT TI

cores containing the parametric SCA Trojans have been placed and routed in clearly

delimited rectangular areas, which are marked in red color with a white cross in both

layout schematics 4.10a and 4.10b, taken from the Synopsys IC Compiler (Version

2016.12) software.

We made use of the malicious PRESENT TI S-Box that has been introduced in

the previous sections and embedded it in a design with full encryption functionality

shown in Figure 4.4.
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Figure 4.8: PRNG on, clock 216 MHz (Trojan triggered), (top) a sample power trace,
t-test results (right) with 100,000,000 traces, (left) absolute maximum over the number
of traces.
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Figure 4.9: PRNG on, clock 216 MHz (Trojan triggered), 50,000,000 traces, DPA
attack result targeting a key nibble based on an S-Box output bit at the first round.

(a) Layout schematic 65 nm ASIC (b) Layout schematic90 nm ASIC

(c) Photo of packaged 90 nm
ASIC

(d) Microscope photo
90 nm ASIC

Figure 4.10: Layout schematic and photos of the ASIC prototypes.
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Synthesizing the unaltered threshold implementation of the PRESENT S-Box (i.e.,

without the inserted Trojan) in the 90 nm and 65 nm target libraries revealed that the

design could potentially meet clock frequencies in the GHz range, even when operated

under worst case operating conditions (i.e., low supply voltage, high temperature).

Unfortunately, no digital IO cells were available in our target technologies that could

reliably propagate such a high-frequency clock into the circuit. Thus, when inserting

the Trojan in the proposed way, i.e., by subtle manipulations at the sub-transistor

level, and keeping period 3 small and stealthy, it could never be triggered, due to

the restrictions of the IO cells and the extremely high performance of the circuit in

the target technologies.

This observation already shows that implementing and testing such a design on an

ASIC is more challenging than on an FPGA, due to the much higher performance

of ASICs. In this regard we have to conclude that an ultra-lightweight block cipher

implementation like the serialized PRESENT, implemented in an advanced CMOS

technology with small propagation delays, may not be the optimal choice for integrating

such a Trojan on an ASIC in the most stealthy way. Yet, to keep the results comparable

to those in [27], we stick to this example and find a workaround for the IO restriction.

Another difficulty when developing ASIC prototypes is the extensive amount of

time and monetary resources that have to be invested. Thus, it is desirable to obtain

a fully functioning prototype in the first attempt when designing a test chip. However,

this is particularly difficult to achieve when the functionality of the design depends

highly on the exact timing of certain signal paths in such a way that even small

deviations from the predicted behavior can invalidate crucial assumptions. In such a

case the designer has to trust its foundry that the characterized timing information

included in the standard cell libraries and simulation models perfectly reflects the

reality – which is hardly ever possible due to process variations. Thus, even commercial

IC design houses often require multiple generations of prototypes that need to be

characterized and adapted between each iteration to finally end up with a marketable
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end-user product. Unlike FPGA platforms where a new HDL design can be synthesized

and implemented within a few minutes and without any additional cost, which allows

for trial & error approaches, an IC implementation requires at least several months

per tape out as well as a significant amount of money, even when sharing a wafer

between multiple projects. Thus, for our case study, in order to not require multiple IC

manufacturing iterations, but rather obtain a working prototype in the first attempt,

we chose to limit the potential sources of error at the cost of sacrificing a part of the

potential stealthiness of the Trojan. In particular, we chose to realize the delay which

needs to be distributed among the selected paths partially by so-called delay gates4

and optimize for a broad frequency range that triggers the Trojan while the PRESENT

core still encrypts correctly (i.e., period 3 ). A delay gate does not have any logical

functionality but simply propagates its input signal with a certain propagation delay

to its output. Clearly, inserting delay gates into the masked S-Box makes the Trojan

less stealthy than sub-transistor level modifications. The same is true for a significant

reduction of the overall operating frequency of the circuit as it can be observed in the

results presented in the following (this reduction is neccessary due to the restrictions

of the IO cells). However, we would like to stress that this case study is simply proving

the conceptual soundness of the approach, in the sense that inserting this delay-based

Trojan makes a side-channel resistant implementation vulnerable when increasing the

clock frequency beyond a certain point. It is planned to demonstrate the stealthiness

of the Trojan on ASIC platforms in further case studies. In many cases, for example

targeting more complex non-linear functions (like the AES S-Box) or less advanced

CMOS technologies (implying larger delays), such a use of additional delay gates will

not be required since the critical path of the design actually restricts the maximum

operating frequency of the design (and not the limitations of the IO cells). Again,

we chose the PRESENT threshold implementation as a case study here to keep the

4Those gates were required since selecting even the slowest cells (high threshold voltage, low drive
strength) could not add enough delay in order to make the Trojan triggerable through the IO cells.
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Table 4.2: Area comparison (post-layout) of PRESENT TI implementation with and
without inserted Trojan (realized by delay gates).

Technology node Area w/o Trojan Area w/ Trojan Overhead

65 nm 4988.5 GE 5006.5 GE +0.36%

90 nm 4807.8 GE 4825.8 GE +0.37%

Table 4.3: Frequency ranges for the different design states.

Status 65 nm ASIC 90 nm ASIC

1 f ≤ 33 MHz f ≤ 56 MHz

2 33 MHz < f ≤ 38 MHz 56 MHz < f ≤ 61 MHz

3 38 MHz < f ≤ appr. 1 GHz 61 MHz < f ≤ appr. 1 GHz

4 appr. 1 GHz < f appr. 1 GHz < f

results comparable to [27]. And even in our case, where we particularly aimed for a

broad range of period 3 , the overhead in terms of area is very small, even less than

half a percent as apparent from Table 4.2. The range of clock frequencies that cause a

certain state of the trojanized design can be seen in Table 4.3. As described before,

state 3 has the broadest frequency range and can easily be targeted by setting the

clock frequency above 38 MHz for the 65 nm ASIC and 56 MHz for the 90 nm ASIC.

The upper limit where the output of the circuit becomes faulty is an approximation,

since it could not be determined experimentally due to the limitation of the IO cells.

4.5.1 Measurement Setup

In order to perform the SCA evaluations on the ASIC prototypes we built a simple

custom measurement board. Since the ASICs have been packaged in JLCC-44 package

(see Figure 4.10c), the custom board provides a corresponding PLCC-44 socket as well

as connectors for a BASYS-3 FPGA board (containing an Artix-7 FPGA) to control

the communication between PC and the ASIC. We measured the power consumption

of the ASICs in the Vdd path by means of a digital sampling oscilloscope at a fixed

sampling rate of 200 samples per clock cycle. Since the operating frequency varies
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between the different scenarios (Trojan triggered or not triggered), fixing the number

of samples per clock cycle (instead of per time period) is the most fair evaluation

method.

4.5.2 SCA Results

We evaluate the SCA resistance of our designs in three different settings using a

non-specific t-test (fixed versus random) [34, 78] to examine the existence of detectable

leakage. First, to validate the correct functionality of the setup, we start with a

non-specific t-test when the PRNG of the target design (used to share the plaintext

for the TI PRESENT encryption) is turned off, i.e., generating always zero instead of

random numbers. Afterwards, we activate the PRNG and operate the design at low

frequency in order to not activate the Trojan. Then, when the PRNG is still running

we increase the clock frequency in order to activate the Trojan. In the latter case we

also conduct key-recovery attacks.

4.5.2.1 Results on 90 nm ASIC

We first collected 1,000,000 traces with PRNG switched off when the design is

operated at 25 MHz, i.e., the Trojan is not triggered. We followed the concept given

in [78] for the collection of traces belonging to fixed and random inputs. Figure 4.11

shows the corresponding t-test results.

As expected a significant amount of detectable leakage can be observed in all

moments, confirming the validity of the setup and the developed evaluation tools.

To repeat the same process when the PRNG is turned on, i.e., the masks for

initial sharing of the plaintext are randomly chosen and uniformly distributed, we

collected 50,000,000 traces for non-specific t-test evaluations. In this case, the device

still operates at 25 MHz, i.e., the Trojan is not triggered. The corresponding results

are shown in Figure 4.12.

It can be seen that no leakage is detected in any of the three statistical moments

after 50,000,000 traces. However, when observing the progress of the maximum
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Figure 4.11: 90 nm ASIC, PRNG off, clock frequency 25 MHz (trojan not triggered),
t-test results with 1 million traces (left), absolute maximum t-value over the number
of traces (right).

absolute t-value in the second-order moment over the number of traces one may

notice that the 4.5 threshold is occasionally exceeded. We should emphasize here that

the underlying TI construction is a first-order masking, which can provide provable

security against first-order SCA attacks. However, higher-order attacks (in this case

second-order attacks already) are expected to exploit the leakage, but they are sensitive

to the noise level [70] since accurately estimating higher-order statistical moments

requires huge amounts of samples compared to lower-order moments. Thus, the

second-order leakage is not unexpected, but the noise level seems too large to reliably

detect (or exploit) this leakage.

As the last step, the same scenario is repeated when the clock frequency is increased

to 85 MHz, where the design is in the 3 period, i.e., with correct functionality and

without uniformity. Similar to the previous experiment, we collected 50,000,000 traces

for a non-specific t-test, whose results are shown in Figure 4.13.
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Figure 4.12: 90 nm ASIC, PRNG on, clock frequency 25 MHz (trojan not triggered),
t-test results with 50 million traces (left), absolute maximum t-value over the number
of traces (right).

As shown by the graphics, there is detectable leakage through the first and second

statistical moment but with lower t-statistics compared to the case with PRNG off.

Therefore, we also have to examine the feasibility of key recovery attacks. To this end,

we made use of those collected traces which are associated with random inputs, i.e.,

around 25,000,000 traces of the last non-specific t-test. We conducted several different

CPA and DPA attacks considering intermediate values of the underlying PRESENT

encryption function. The most successful attack was recognized as classical DPA

attack [48] targeting a key nibble by predicting an S-Box output bit at the first round

of the encryption. As an example, Figure 4.14 presents an exemplary corresponding

result.
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Figure 4.13: 90 nm ASIC, PRNG on, clock frequency 85 MHz (trojan triggered), t-test
results with 50 million traces (left), absolute maximum t-value over the number of
traces (right).

4.5.2.2 Results on 65 nm ASIC

After we have seen that the Trojan indeed achieves what it has been designed for

on the 90 nm ASIC, we repeat the same kind of experiments on the 65 nm chip. At

first, the results after 1,000,000 traces with the deactivated Trojan (25 MHz) and the

switched off PRNG can be seen in Figure 4.15.

As before, detectable leakage is visible in all three statistical moments, but its

magnitude is significantly smaller than on the 90 nm ASIC, indicating a lower signal-

to-noise ratio. Thus, for the next step with PRNG on we measured more traces

than before, namely 80,000,000. The results in Figure 4.16 show that with PRNG on

and the Trojan not triggered at 25 MHz clock, there is no detectable leakage in any

moment.

When measuring at 50 MHz, however, i.e., triggering the Trojan, significant leakage

can be detected in all moments, as apparent in Figure 4.17.
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Figure 4.14: 90 nm ASIC, PRNG on, clock frequency 85 MHz (trojan triggered), CPA
results targeting a key nibble based on an S-Box output bit with 25 million traces
(right), absolute maximum correlation coefficient over the number of traces (left).

The successful CPA in 4.18 targeting a key nibble based on an S-Box output bit

using 40,000,000 traces confirms that the leakage is indeed exploitable.
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Figure 4.15: 65 nm ASIC, PRNG off, clock frequency 25 MHz (Trojan not triggered),
t-test results with 1 million traces (left), absolute maximum t-value over the number
of traces (right).
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Figure 4.16: 65 nm ASIC, PRNG on, clock frequency 25 MHz (Trojan not triggered),
t-test results with 80 million traces (left), absolute maximum t-value over the number
of traces (right).
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Figure 4.17: 65 nm ASIC, PRNG on, clock frequency 50 MHz (Trojan triggered),
t-test results with 80 million traces (left), absolute maximum t-value over the number
of traces (right).
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Figure 4.18: 65 nm ASIC, PRNG on, clock frequency 50 MHz (trojan triggered), CPA
results targeting a key nibble based on an S-Box output bit with 40 million traces
(right), absolute maximum correlation coefficient over the number of traces (left).
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CHAPTER 5

TEMPERATURE-BASED HARDWARE TROJAN FOR
RING-OSCILLATOR-BASED TRNGS

True random number generators (TRNGs) are essential components of crypto-

graphic designs, which are used to generate private keys for encryption and authentica-

tion, and are used in masking countermeasures. In this work, we present a mechanism

to design a stealthy parametric hardware Trojan for a specific TRNG architecture

proposed by Yang et al. at ISSCC 2014. Once the Trojan is triggered the malicious

TRNG generates predictable non-random outputs. Such a Trojan does not require

any additional logic (even a single gate) and is purely based on subtle manipulations

on the sub-transistor level. The underlying concept is to disable the entropy source at

high temperature to trigger the Trojan, while ensuring that Trojan-infected TRNG

works correctly under normal conditions. We show how an attack can be performed

with the Trojan-infected TRNG design in which the attacker uses a stochastic Markov

Chain model to predict its reduced-entropy outputs.

5.1 Introduction

High entropy random numbers are essential components for many cryptographic

algorithms. Some applications of TRNGs are generating private keys, nonces, random

numbers in challenge response protocols, and random numbers in countermeasure

implementations to mask key-dependent values. One of the most popular method for

generating random numbers is sampling jittery signals generated by ring oscillators

(ROs) [86, 25]. In this chapter, we present a parametric hardware Trojan for an RO-

based TRNG presented in [86] so that it works correctly under normal environmental
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conditions, but produces predictable outputs at particular high temperatures. The

Trojan is introduced by slightly changing the characteristics of a few transistors. We

show that by injecting this Trojan, we are able to precisely control the output of the

TRNG. This biasing can significantly lower the security level of any cryptographic

applications that rely on the TRNG. A stochastic Markov Chain model allows the

attacker to use their knowledge of the Trojan to predict the output of the Trojan-

infected TRNG.

5.2 Ring oscillator-based TRNG

We consider the true random number generator (TRNG) design proposed in [86].

Figure 5.1 shows the TRNG architecture, which is based on the collapse time of three

racing edges in a ring oscillator (RO). The design has two ring oscillators (RO). The

first one is a reference that operates as a standard single-edge ring oscillator. The

second one, which is called 3-edge RO, has three edges injected by three input nodes

that propagate through the ring together at the same time (Figure 5.2). These edges

in the 3-edge RO have same period, but they are shifted 120◦ in phase. As a result of

this the frequency of the output of the 3-edge RO is boosted 3× in comparison to the

regular RO. There is an increasing variation of the pulse width between edges in the

3-edge RO because of thermal noise (jitter) that exists in the system. This variation

in the pulse widths causes neighboring edges to eventually collapse in the 3-edge RO,

after which there is only a single oscillation in the ring. The collapse event in turn

causes the 3-edge RO to change to a typical 1x frequency mode as can be seen in

Figure 5.3. The time to collapse is used as the entropy source for the TRNG.

Phase frequency detector (PFD) module in the TRNG architecture shown in

Figure 5.1 is used to detect the edge collapse events by comparing the frequencies of

the regular RO and the 3-edge RO. A 14-bit counter counts the number of cycles until

edge collapse event. This counter increments on rising edges of the 3-edge RO.
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Figure 5.1: TRNG system block diagram [86]

Figure 5.2: 3-edge ring oscillator

Figure 5.3: Output waveforms of the regular RO (bottom) and 3-edge RO (top)
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The number of cycles to collapse follows inverse Gaussian distribution caused

by thermal noise. In this design effect of process variation is canceled because all

three edges propagate through the same RO stages[81]. We need to extract uniformly

distributed random bits from collapse time. A simple method which has been applied

in TRNG designs [81], [54] is to take the lower bits of the collapse count as output

while the LSB is dropped to eliminate sensitivity to mismatch in the counter sampling

flip-flop. In our work we consider COUNT[6:4] as the TRNG random output bits.

5.3 Hardware Trojan RO-based TRNG

Our goal is to maliciously manipulate the TRNG design to produce predictable

outputs at a particular high environmental temperature. The conditions that cause a

transition from correct behavior to Trojanized behavior should be available and known

only to the Trojan attacker. In order to trigger the Trojan, the attacker must apply

the specific temperature which could for example be beyond the maximum operating

temperature of the device.

To realize such a scenario – inspired from the stealthy parametric Trojan introduced

in [33] – we intentionally lengthen a certain path of a combinatorial circuit. This

is done in such a way that by increasing the device’s temperature, a signal on this

path propagates slower than in normal operation. In the 3-edge RO construction, we

achieve our goal of compromising the entropy by delaying one of the three edges of the

3-edge RO, which causes the RO to collapse in a few cycles with negligible variation.

This rapid collapse behavior is not useful for generating random bits as it does not

provide enough entropy.

Our technique for causing the delay change is based on manipulating one of the

NAND gates that injects an edge to the RO circuit in such a way that its propagation

delay is increased with temperature. The NAND gate must be very carefully altered

in such a way that its propagation delay becomes more sensitive to the temperature
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variation than the other gates of the 3-edge RO. Note that the functionality of the

design is unaltered during the normal environmental temperature.

In the rest of this section, we explain how we inject the Trojan into the RO-based

TRNG by modifying parameters of a few transistors, and how we use temperature as

the trigger of our Trojan.

5.3.1 Temperature Dependence of Propagation Delay

Temperature can affect various process parameters of a device such as threshold

voltage, carrier mobility, and leakage current. In this work, we focus on manipulation

of threshold voltage and show how this can be used by an attacker to trigger the

Trojan at a specific operating temperature. The threshold voltage of a device can be

changed by various methods such as ion implantation or body biasing.

Threshold voltage and mobility decrease as the temperature increases. As supply

voltage (Vdd) scaled in new technology generation, the value of |VGS − VTH | decreases.

The smaller |VGS − VTH | makes saturation current more sensitive to change in VTH ,

which decreases when temperature increases. The larger VTH incurs less current that

makes the device slower. On the other hand, transition delay is related to the carrier

mobility, which decreases when temperature rises. Therefore, the device performance

depends on the racing condition of electron mobility and VTH when temperature rises.

Equation 5.1 shows the variation of propagation delay Dp [83].

Dp ∝
CoutVdd
I − d ≡

CoutVdd
µ(T )(Vdd − VTH(T ))

(5.1)

As the carrier mobility (µ) decreases, the performance degrades, while the decrease

in threshold voltage VTH makes the device faster. Therefore, to make the propagation

delay of our target NAND gate in the 3-edge RO circuit more sensitive to the

temperature increases, we manipulate the threshold voltages of its transistors and use

a combination of high VTH and low VTH transistors for its implementation.
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5.3.2 Injecting temperature-triggered Trojan into RO-based TRNG

The time to collapse is used as the entropy source for random number generation,

and delaying the start of any edges will cause the output to be not random. We focus

on a single NAND gate B shown in Figure 5.4. We realize the Trojan functionality by

increasing the delay sensitivity of the NAND gate B to temperature increases without

modifying the logic circuit. The Trojan is triggered by increasing the delay of the

NAND gate B by increasing temperature, so that the edge B is injected to the RO

with delay. It means that the neighboring edges of the edge B can reach it sooner than

in the unmodified circuit. As a result of this, we will have a small time to collapse

and hence reduced entropy. Utilizing the temperature characteristics described in

Section 5.3.1, an attacker adjusts the threshold of individual transistors in the circuit

so that the circuit works correctly at the normal environmental temperatures, but

acts as a Trojan beyond a particular temperature.

We show in Figure 5.4 how we modify the transistor-level implementation of the

targeted NAND gate B to make it more sensitive to the temperature. We use high

threshold voltages (high-VTH) for the NMOS and PMOS transistors connected to the

start input, whose threshold voltages are increased from their standard values. As

a result of this, both modified transistors will be slow to propagate the transitions

on the start input to the output of the NAND gate when the temperature increases.

Furthermore, to these two transistors more sensitive to temperature than the other

transistors, we use low threshold voltages (low-VTH) for the rest of the transistors

in the circuit so that their delay will not increased as much as these two targeted

transistors. Note that the amount of delay added to the targeted NAND gate by the

threshold voltage manipulation is small in the regular environmental temperature

and does not affect the behavior of the 3-edge RO, so the malicious modification is

extremely difficult to detect.

As an example, we simulate the maliciously manipulated 3-edge RO design in two

different environmental temperatures; 25◦C (as a normal environmental temperature),
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Figure 5.4: Threshold voltage manipulation of the 3-edge RO

and 120◦C (as an increased environmental temperature). The Trojanized circuit

behaves similar at 25◦C to the unmodified 3-edge RO and there is a large collapse time

(Figure 5.5(a)) which can be used as a source of entropy for random number generation.

At 120◦C, the behavior of the Trojanized circuit is changed and it collapses in a few

cycles (Figure 5.5(b)). The immediate collapse occurs because the edge at NAND gate

B in the manipulated 3-edge RO is not injected into the ring simultaneously with the

two other edges injected at A and C. The immediate collapse behavior is not useful

for extracting random bits and does not provide enough entropy. This is how the

proposed temperature-triggered hardware Trojan removes the source of randomness

from the 3-edge RO when the temperature rises.

5.4 How to Predict the Output of the Trojan TRNG

In this section, we describe how, in principle, an attack on the Trojan infected ran-

dom number generator can be executed. When an attacker wants to attack the TRNG,

she may choose the environment temperature and the input master clock (MCLK)

of the TRNG at her will. But even when attacker knows the operating conditions of
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Figure 5.5: Output waveform of the Trojan infected 3-edge RO at (left) 25◦C where
there is a large time to collapse, and (right) 120◦C where there is a very small time to
collapse

the TRNG, its output bit-stream cannot be predicted perfectly, because of existing

jitter in the TRNG, which follows independent normal distribution (N(0, σ2
jitter)). We

elaborate a stochastic model for the attacker’s knowledge to predict the output of

the Trojan infected TRNG with a Markov chain model to describe the probability of

occurrence for different output sequences of the Trojan infected TRNG.

5.4.1 Markov chain

A Markov chain is a stochastic model which describes a sequence of possible events

in which the probability of each event depends only on the state in the previous

event [28]. Assume we have a process with a set of states S = s1, s2, ..., sr. The process

starts in one of these states (initial state) and moves from one state to another. If the

process is in state si, then it moves to state sj with a transition probability pij at the

next step , which is independent of states the chain was in before. Here we use two

examples to explain the Markov chain concept from [35].
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Example 1 [35]: Assume we want to model with a Markov chain the weather

of a city that never has two nice days consecutively. If it has a nice day, it has snow

or rain in the next day with equal probability. If it has snow or rain, it has an even

chance of having the same the next day. If there is change from snow or rain, only

half of the time is this a change to a nice day. The city transition probability matrix

is defined as follows.

P =


1
2

1
4

1
4

1
2

0 1
2

1
4

1
4

1
2


Power Matrix: Let P be the transition matrix of a Markov chain. The ijth entry

p
(n)
ij of the matrix P n gives the probability that the Markov chain, starting in state si,

will be in state sj after n steps [35].

Example 2 [35]: Consider the weather of the city explained in Example 1. We

are interested in the state of the chain after a large number of steps. Here are the

powers of the Transition Matrix P:

P 1 =


0.5 0.25 0.25

0.5 0.0 0.5

0.25 0.25 0.5



P 2 =


0.438 0.188 0.375

0.375 0.250 0.375

0.375 0.188 0.438
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P 3 =


0.406 0.203 0.391

0.406 0.188 0.406

0.391 0.203 0.406


5.4.2 Predicting Bits

As we explained in Section 5.3, our Trojan removes the entropy source of the

manipulated TRNG when temperature increases so that the Trojan infected TRNG

counts as a non-random and predictable counter when temperature rises. For example

the TRNG counter value increments by approximately 130 in each cycle when we

set the period of the MCLK to 26ns. The variation in the counts is due to jitter

which follows a normal distribution as shown in Figure 5.6 in which σ=100ps and

x-axis shows the value that Trojan infected TRNG counts each time which makes the

prediction hard for the attacker. Note that without loss of generality, we assumed σ

equals to RO period for simplification.

Figure 5.6: Jitter effect on the Trojan infected TRNG counter values
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Transition matrix of the Trojan infected TRNG for seven lower output bits is shown

by Equation 5.2 where pij is the transition probability that a TRNG output value

which is currently i will move to value j at the next step. For example, p01 = 0.341 is

the probability of TRNG output transition from 0000000 to 0000001. If the current

output value of the TRNG is 0000000, in order to have the value 0000001 as the next

output, the TRNG must increment its current value by 129 in the next clock cycle,

which happens with probability of 0.341 based on Figure 5.6. As another example,

consider p10 = 0.021 which is the probability of TRNG output transition from 0000001,

to 0000000. If the current output value of the TRNG is 0000001, in order to have

value 0000000 as the next value of the TRNG, the TRNG must increment its count

by 127, which happens with probability 0.021 as shown in Figure 5.6.

P =



0000000 0000001 . . . 1111110 1111111

0000000 0.136 0.341 . . . 0.001 0.021

0000001 0.021 0.136 . . . 0.000 0.001

...
...

...
. . .

...
...

1111111 0.341 0.341 . . . 0.021 0.136


128∗128

(5.2)

The powers of the transition matrix of the Trojan infected TRNG give the attacker

interesting information about the process as it evolves. She shall be particularly

interested in the state of the chain after a large number of steps. For example, consider

a scenario in which the TRNG output is used to produce a 15-bit secret key for a

crypto system. Guessing this 15-bit secret key with certainty through brute force

requires trying 215 possible values for the key. An attacker that knows the properties

of the output pattern of the Trojan infected TRNG, which are represented by the

transition matrix and power matrices of the Trojan infected TRNG, can have an

enhanced ability to predict output sequences.
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The attacker, for guessing the 15-bit key generated by the Trojan infected TRNG,

needs to predict 5 consecutive times the TRNG output (COUNT [6 : 4]). The power

matrix P 4 gives the attacker the transition probabilities 5 steps from the current state

of the TRNG output. However, the internal states between current state (P 1 = P ) and

the fifth state (P 4) of the TRNG output are also important for the attacker. Assume

the attacker wants to find the probability with which TRNG generates sequence

000, 000, 000, 000, 000. P 4 gives the probabilities with which TRNG generates output

value = 000 at step 5 when its output value is 000 at step 1, independent of the

output values in steps 2, 3, and 4. The attacker wants to know the probability that

the intermediate output values (steps 2, 3, and 4) are 000 too. To solve this problem,

we modify the transition matrix P before computing P 4 in order to avoid counting

sequences that contain unwanted intermediate states. Equation 5.3 shows the modified

P for sequence 000, 000, 000, 000, 000 in which we set to zero the probabilities of all

unwanted transitions that are incompatible with the desired sequence. For example,

transition from state 0000001 to state 1111111 corresponds to COUNT [6 : 4] = 000

being followed by COUNT [6 : 4] = 111 which is incompatible with the target sequence,

so we set the transition probability to zero so that it won’t be counted. As can be

seen in this figure, only a block of size 16 × 16 remains as non-zero; this 16 × 16

block denotes the probabilities of all possible transitions from states 000xxxx to states

000xxxx where x ∈ {0, 1}. After obtaining the modified transition matrix P ′, we

compute P ′
4

which includes the probabilities of four transitions from the current state.
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P ′ =

0000000 0000001 . . . 0001111 0010000 . . . 1111111



0000000 0.136 0.341 . . . 0.000 0.000 . . . 0.000

0000001 0.021 0.136 . . . 0.000 0.000 . . . 0.000

...
...

...
. . .

... 0.000
. . . 0.000

0001111 0.000 0.000 . . . 0.136 0.000 . . . 0.000

0010000 0.000 0.000 0.000 0.000 0.000 . . . 0.000

...
...

...
...

...
...

. . .
...

1111111 0.000 0.000 . . . 0.000 0.000 . . . 0.000

128∗128
(5.3)

Consider u as the probability vector which represents the initial state of a Markov

chain, then the ith component of u represents the probability that the chain starts in

state si. For our Trojan infected TRNG we assume all initial states are equally likely

to occur. The following vector represents the initial state of our manipulated TRNG

in which the probability that the chain starts in any state is
1

128
.

u = [
1

128

1

128

1

128
...

1

128

1

128
]1×128 (5.4)

The probability that the chain is in state si after n steps is the ith entry in the

following vector:

u(n) = uP n (5.5)

To obtain the probability of the sequence 000, 000, 000, 000, 000 we set n = 4 in

the Equation 5.5 and then add all non-zero probabilities as shown in Equations 5.6

and 5.7. The obtained value is almost equal to the measured value in our experiment.
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u(4) = uP ′
4

= [
1

128

1

128

1

128
...

1

128

1

128
]P ′

4
(5.6)

P (000, 000, 000, 000, 000) =
i=128∑
i=0

uP ′
4
[i] = 0.0764 (5.7)

An attacker can use this method to obtain the most likely patterns for an n-bit key.

Table 5.1 lists the eight most likely patterns of a 15-bit key and their probabilities.

The attacker can guess the 15-bit key with the probability of 0.61 by trying these

eight patterns.

Table 5.1: Most likely 15-bit patterns

15-bit Pattern Probability

000000000000000 0.0764

001001001001001 0.0764

010010010010010 0.0764

011011011011011 0.0764

100100100100100 0.0764

101101101101101 0.0764

110110110110110 0.0764

111111111111111 0.0764

5.5 Practical Results

45nm Nangate Open Cell Library is used for our implementation of the Trojan

free and Trojan infected TRNGs.

5.5.1 Randomness and Performance of the TRNG

The randomness of the Trojan free TRNG and the Trojan infected TRNG are

evaluated by the NIST statistical test suite [5]. The Trojan free TRNG is robust

and passes all NIST tests across all temperatures (25◦C, 60◦C, 120◦C) as shown in

Table 5.2. The NIST test suite results of the Trojan infected TRNG are also shown in

Table 5.2 for different temperatures (25◦C, 60◦C, 120◦C). The Trojan infected TRNG
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passes the tests at the normal environmental temperatures (25◦C, 60◦C), but at the

trigger temperature of 120◦C does not pass the tests.

Table 5.2: NIST test suite results for Trojan free and Trojan infected TRNG

NIST
Trojan free design Trojan infected design

25◦C 60◦C 120◦C 25◦C 60◦C 120◦C

Frequency pass pass pass pass pass pass

Block frequency pass pass pass pass pass fail

Cumulative sums (1) pass pass pass pass pass fail

Cumulative sums (2) pass pass pass pass pass pass

Longest runs pass pass pass pass pass pass

FFT pass pass pass pass pass fail

Approximate entropy pass pass pass pass pass fail

The measured distribution of number of cycles to collapse of the Trojan infected

3-edge RO at different environmental temperatures are shown in Figure 5.7 which

follows inverse Gaussian distribution. Increasing the temperature causes the mean

and variance of the number of cycles to collapse to decrease. At 120◦C the mean value

becomes 0 with negligible variance, meaning that the Trojan infected TRNG collapses

within the first few cycles and therefore does not provide enough entropy.

Figure 5.8 illustrates the Trojan free TRNG bitstream and also the Trojan infected

TRNG bitstream, raster scanning top-to-bottom then left-to-right. The outputs of

the Trojan-free TRNG do not have any apparent pattern (Figure 5.8(a)), while the

outputs of the Trojan infected TRNG at the trigger temperature are clearly periodic

and non-random (Figure 5.8(b)). As another view of the same data, the output values

of the Trojan-free TRNG for 600 samples (1800 bits) are shown in Figure 5.9(a), and

the output values of the Trojan infected TRNG are shown in Figure 5.9(b). The

Trojan infected TRNG produces output patterns that are largely periodic but have

some noise.
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Figure 5.7: Distribution of 3-edge RO cycles to collapse at different environmental
temperatures

(a) Trojan free TRNG

(b) Trojan infected TRNG

Figure 5.8: Output patterns of (a) the Trojan free TRNG, and (b) the Trojan infected
TRNG, raster scanning left-to-right then top-to-bottom.
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(a)

(b)

Figure 5.9: Output values of (a) Trojan free TRNG and (b) Trojan infected TRNG at
120◦C.
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CHAPTER 6

CONCLUSION

Hardware Trojans have gained increasing attention in academia, industry and

by government agencies. Designing reliable Trojan countermeasures requires an

understanding of how hardware Trojans can be built in practice. This area, which

has received relatively scant treatment in the literature, is the topic of this thesis.

In particular, the thesis examines how particularly stealthy parametric Trojans can

be introduced to VLSI circuits. Parametric Trojans are those which do not require

any additional logic, but instead are based on subtle manipulations of designs at the

sub-transistor level. The thesis has shown how parametric Trojans can infect three

specific designs, for different purposes. All three Trojans proposed in the thesis would

be very hard to detect, and may even be able to evade detection by a certification lab.

The three specific Trojan examples in thesis are intended to be case studies, and the

methodologies developed for inserting the Trojans can have broad application in other

circuits.

Firstly, this thesis introduced a new type of parametric hardware Trojans based on

rarely-sensitized path delay faults. While hardware Trojans using parametric changes

(i.e. that only modify the performance/parameters of gates) have been proposed

before, the previously proposed parametric hardware Trojans cannot be triggered

deterministically. They are instead either triggered after time by aging [79], triggered

randomly under reduced voltage [50] or are always on and can leak keys using a

power side-channel [7]. In contrast, the proposed parametric hardware Trojan in this

paper can be triggered by applying specific input sequences to the circuit. Hence,

this work introduces the first trigger-based parametric hardware Trojan. To achieve
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this, a SAT-based algorithm is presented which efficiently searches a combinational

circuit for paths that are extremely rarely sensitized. A genetic algorithm is then

used to distribute delays over all the gates on the path so that a path delay fault

occurs when trigger inputs are applied, while for other inputs the timing criteria are

met. In this way, a faulty response is computed only for a very small subset of input

combinations. To demonstrate the usefulness of the proposed technique, a 32-bit

multiplier is modified so that, for some multiplications, faulty responses are computed.

These faults can be so rare that they do not interfere with normal operations but can

still be used by the Trojan designer for a bug attack against public key algorithms. As

a motivating example, we showed how this can be achieved for ECDH implementations.

Please note that while we used a multiplier as our case study, the general idea of

path delay Trojans and the tool-flow and algorithms presented in this work are not

restricted to multipliers. Hence, this work shows that by making only extremely

stealthy parametric changes to a design, a malicious factory could insert backdoors to

leak out secret keys.

In this thesis, we also show how to insert a parametric hardware Trojan with very

low overhead into SCA-resistant designs. The presented Trojan is capable of being

integrated into both ASIC and FPGA platforms. Since it does not add any logic

into the design, its chance of being detected is expected to be very low. Compared

to the original design, its only footprint is around 10% decrease in the maximum

clock frequency. We have shown that by increasing the clock frequency, the malicious

threshold implementation design starts leaking exploitable information through side

channels. Hence, the Trojan adversary can trigger the Trojan and make use of the

exploitable leakage, while the design can pass SCA evaluations when the Trojan is not

triggered. More precisely, suppose that the maximum clock frequency of the malicious

device is 196 MHz. Hence, in an evaluation lab its SCA leakage will not be examined at

200 MHz because the device does not operate correctly. However, the Trojan adversary

runs the device at 216 MHz and the SCA leakage becomes exploitable. To the best of
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our knowledge, compared to the previous works in the areas of side-channel hardware

Trojans, our construction is the only one which is applied on a provably-secure SCA

countermeasure, and is parametric with very low overhead.

Finally, this dissertation also shows how a parametric hardware Trojan with very

low overhead can be inserted into RO-based TRNG designs. The underlying concept

is based on removing source of entropy of the TRNG when Trojan is triggered in

high temperature, while the malicious TRNG works correctly and generate random

outputs in normal conditions. To inject the Trojan, we lengthen the certain path

of combinatorial logic in the RO such that increasing the temperature can diminish

the entropy of the of the circuit upon which the TRNG is based. We elaborate a

stochastic model based on Markov Chain for the attacker’s knowledge to predict the

output of the Trojan infected TRNG. This parametric Trojan allows us to significantly

lower the security level even of highly protected crypto-core implementations that are

connected to the TRNG.
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mentation of Nonlinear Functions in the Presence of Glitches. J. Cryptology 24,
2 (2011), 292–321.

[66] Oswald, Elisabeth, Mangard, Stefan, Pramstaller, Norbert, and Rijmen, Vincent.
A Side-Channel Analysis Resistant Description of the AES S-Box. In FSE 2005
(2005), vol. 3557 of Lecture Notes in Computer Science, Springer, pp. 413–423.

[67] Popp, Thomas, Kirschbaum, Mario, Zefferer, Thomas, and Mangard, Stefan.
Evaluation of the Masked Logic Style MDPL on a Prototype Chip. In CHES
2007 (2007), vol. 4727 of Lecture Notes in Computer Science, Springer, pp. 81–94.

[68] Poschmann, Axel, Moradi, Amir, Khoo, Khoongming, Lim, Chu-Wee, Wang,
Huaxiong, and Ling, San. Side-Channel Resistant Crypto for Less than 2, 300
GE. J. Cryptology 24, 2 (2011), 322–345.

102



[69] Pozo, Santos Merino Del, and Standaert, François-Xavier. Getting the Most
Out of Leakage Detection - Statistical tools and Measurement Setups Hand in
Hand. In COSADE 2017 (2017), Lecture Notes in Computer Science, Springer.
to appear.

[70] Prouff, Emmanuel, Rivain, Matthieu, and Bevan, Régis. Statistical Analysis of
Second Order Differential Power Analysis. IEEE Trans. Computers 58, 6 (2009),
799–811.

[71] Rajendran, J., Jyothi, V., and Karri, R. Blue team red team approach to hardware
trust assessment. In IEEE 29th International Conference on Computer Design
(ICCD 2011) (oct. 2011), pp. 285–288.

[72] Rajendran, J., Jyothi, V., Sinanoglu, O., and Karri, R. Design and analysis
of ring oscillator based Design-for-Trust technique. In 29th IEEE VLSI Test
Symposium (VTS 2011) (2011), pp. 105–110.

[73] Reparaz, Oscar, Bilgin, Begül, Nikova, Svetla, Gierlichs, Benedikt, and Ver-
bauwhede, Ingrid. Consolidating Masking Schemes. In CRYPTO 2015 (2015),
vol. 9215 of Lecture Notes in Computer Science, Springer, pp. 764–783.

[74] Saha, Sayandeep, Chakraborty, Rajat S., Nuthakki, Srinivasa S., and Mukhopad-
hyay, Debdeep. Improved test pattern generation for hardware trojan detection
using genetic algorithm and boolean satisfiability. In Cryptographic Hardware
and Embedded Systems–CHES 2015. Springer, 2015, pp. 577–596.
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Application to Tightening Threshold Implementations. In SAC 2015 (2015),
vol. 9566 of Lecture Notes in Computer Science, Springer, pp. 263–276.

[77] Sasdrich, Pascal, Moradi, Amir, and Güneysu, Tim. Hiding Higher-Order Side-
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