740 research outputs found

    A Class of Second Order Difference Approximation for Solving Space Fractional Diffusion Equations

    Full text link
    A class of second order approximations, called the weighted and shifted Gr\"{u}nwald difference operators, are proposed for Riemann-Liouville fractional derivatives, with their effective applications to numerically solving space fractional diffusion equations in one and two dimensions. The stability and convergence of our difference schemes for space fractional diffusion equations with constant coefficients in one and two dimensions are theoretically established. Several numerical examples are implemented to testify the efficiency of the numerical schemes and confirm the convergence order, and the numerical results for variable coefficients problem are also presented.Comment: 24 Page

    Dispersion of particles in an infinite-horizon Lorentz gas

    Full text link
    We consider a two-dimensional Lorentz gas with infinite horizon. This paradigmatic model consists of pointlike particles undergoing elastic collisions with fixed scatterers arranged on a periodic lattice. It was rigorously shown that when t→∞t\to\infty, the distribution of particles is Gaussian. However, the convergence to this limit is ultraslow, hence it is practically unattainable. Here we obtain an analytical solution for the Lorentz gas' kinetics on physically relevant timescales, and find that the density in its far tails decays as a universal power law of exponent −3-3. We also show that the arrangement of scatterers is imprinted in the shape of the distribution.Comment: Article with supplemental material: 10 pages, 4 figure

    Regge's Einstein-Hilbert Functional on the Double Tetrahedron

    Full text link
    The double tetrahedron is the triangulation of the three-sphere gotten by gluing together two congruent tetrahedra along their boundaries. As a piecewise flat manifold, its geometry is determined by its six edge lengths, giving a notion of a metric on the double tetrahedron. We study notions of Einstein metrics, constant scalar curvature metrics, and the Yamabe problem on the double tetrahedron, with some reference to the possibilities on a general piecewise flat manifold. The main tool is analysis of Regge's Einstein-Hilbert functional, a piecewise flat analogue of the Einstein-Hilbert (or total scalar curvature) functional on Riemannian manifolds. We study the Einstein-Hilbert-Regge functional on the space of metrics and on discrete conformal classes of metrics
    • …
    corecore