20 research outputs found

    Faster and more accurate classification of time series by exploiting a novel dynamic time warping averaging algorithm

    Get PDF
    A concerted research effort over the past two decades has heralded significant improvements in both the efficiency and effectiveness of time series classification. The consensus that has emerged in the community is that the best solution is a surprisingly simple one. In virtually all domains, the most accurate classifier is the nearest neighbor algorithm with dynamic time warping as the distance measure. The time complexity of dynamic time warping means that successful deployments on resource-constrained devices remain elusive. Moreover, the recent explosion of interest in wearable computing devices, which typically have limited computational resources, has greatly increased the need for very efficient classification algorithms. A classic technique to obtain the benefits of the nearest neighbor algorithm, without inheriting its undesirable time and space complexity, is to use the nearest centroid algorithm. Unfortunately, the unique properties of (most) time series data mean that the centroid typically does not resemble any of the instances, an unintuitive and underappreciated fact. In this paper we demonstrate that we can exploit a recent result by Petitjean et al. to allow meaningful averaging of “warped” time series, which then allows us to create super-efficient nearest “centroid” classifiers that are at least as accurate as their more computationally challenged nearest neighbor relatives. We demonstrate empirically the utility of our approach by comparing it to all the appropriate strawmen algorithms on the ubiquitous UCR Benchmarks and with a case study in supporting insect classification on resource-constrained sensors

    Non-Intrusive Program Tracing of Non-Preemptive Multitasking Systems Using Power Consumption

    Get PDF
    System tracing, runtime monitoring, execution reconstruction are useful techniques for protecting the safety and integrity of systems. Furthermore, with time-aware or overhead-aware techniques being available, these techniques can also be used to monitor and secure production systems. As operating systems gain in popularity, even in deeply embedded systems, these techniques face the challenge to support multitasking. In this thesis, we propose a novel non-intrusive technique, which efficiently reconstructs the execution trace of non-preemptive multitasking system by observing power consumption characteristics. Our technique uses the Control Flow Graph (CFG) of the application program to identify the most likely block of code that the system is executing at any given point in time. For the purpose of the experimental evaluation, we first instrument the source code to obtain power consumption information of each Basic Block (BB), which is used as the training data for our Dynamic Time Warping (DTW) and k-Nearest Neighbors (k-NN) classifier. Once the system is trained, this technique is used to identify live code-block execution (LCBE). We show that the technique can reconstruct the execution flow of programs in a multi-tasking environment with high accuracy. To aid the classification process, we analyze eight widely used machine learning algorithms with time-series power-traces data and show the comparison of time and computational resources for all the algorithms
    corecore