
Non-Intrusive Program Tracing of
Non-Preemptive Multitasking

Systems Using Power Consumption

by

Kamal Lamichhane

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2017

c© Kamal Lamichhane 2017

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Chapter 3 and chapter 4 of this thesis have been adopted from the work [68] which is
accepted for publication at the 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE) in Dresden, Germany. Author of this thesis is the primary author
of the accepted paper along with co-author Dr. Carlos Moreno and Associate Professor
Sebastian Fischmeister. Carlos Moreno is a Senior Reseach Associate under the supervision
of Associate Professor Sebastian Fischmeister in the Real-time Embedded Software Group
at the University of Waterloo.

Hardware setup used in chapter 3 for data capture were contributed by Carlos Moreno,
who also contributed his ideas, reviews, and suggestions. All the work presented in this
thesis were completed under the supervision of Professor Sebastian Fischmeister in the
ECE department at the University of Waterloo, who contributed with his ideas, reviews,
and suggestions.

iii

Abstract

System tracing, runtime monitoring, execution reconstruction are useful techniques for
protecting the safety and integrity of systems. Furthermore, with time-aware or overhead-
aware techniques being available, these techniques can also be used to monitor and secure
production systems. As operating systems gain in popularity, even in deeply embedded
systems, these techniques face the challenge to support multi-tasking.

In this thesis, we propose a novel non-intrusive technique, which efficiently reconstructs
the execution trace of non-preemptive multitasking system by observing power consump-
tion characteristics. Our technique uses the Control flow Graph (CFG) of the application
program to identify the most likely block of code that the system is executing at any given
point in time. For the purpose of the experimental evaluation, we first instrument the
source code to obtain power consumption information of each Basic Block (BB), which is
used as the training data for our Dynamic Time Warping (DTW) and k-Nearest Neigh-
bors (k-NN) classifier. Once the system is trained, this technique is used to identify live
code-block execution (LCBE). We show that the technique can reconstruct the execution
flow of programs in a multi-tasking environment with high accuracy. To aid the classifi-
cation process, we analyze eight widely used machine learning algorithms with time-series
power-traces data and show the comparison of time and computational resources for all
the algorithms.

iv

Acknowledgements

Past twenty-eight months has been a period of intense learning for me, not only in the
area of my research but also on a personal level. I would like to extend my gratitude to
the people who have supported me throughout this period.

First and foremost I would like to express my gratitude to my supervisor Dr. Sebastian
Fischmeister for his continuous guidance, inspiration, suggestions, and all the opportuni-
tites I was given. Thank you for believing in me.

Secondly, I would like to extend my words of sincere appreciation to Dr. Carlos Moreno
who has provided excellent guidance and support throughout this period. Big thanks!! to
you for your patience; it was a great honor and a tremendous learning opportunity working
with you.

I would like to thank all my course instructors for the invaluable knowledge that you
shared. I would also like to acknowledge Sean Kauffman, Jack Morgan, and Jeet for their
assistance and suggestions during this period. My words of acknowledgment to all the
administrative staff at the University of Waterloo. Thank You!

Finally, there are my friends who not only discussed papers, problems and findings but
also supported me throughout. I would like to thank all my friends for the support and
suggestions in my work – Bismaya Sahoo, Hemant surale, Pratik Bhandary. thank you!!

Once again thank you!!! Sebastian Fischmeister for your guidance. I’m grateful for
your support.

v

Dedication

This thesis is dedicated to my parents and sisters for their endless love, support, and
encouragement.

vi

Table of Contents

List of Tables x

List of Figures xi

List of Acronyms xii

1 Introduction 1

1.1 Related Work . 3

1.2 Problem Statement and Assumptions . 4

1.3 Contributions . 5

1.4 Organization of the Thesis . 5

2 Background 6

2.1 System Model Concepts . 6

2.1.1 Power Trace Analysis . 6

2.1.2 Basic Block (BB) . 7

2.1.3 Control Flow Graph (CFG) . 8

2.1.4 Multitasking Systems – Interrupts and Context Switching 9

2.1.5 Time Series Classification . 11

2.2 Machine Learning Algorithms for Time Series Classification 13

2.2.1 Types of machine learning . 14

vii

2.2.2 k-Nearest Neighbors . 14

2.2.3 Naive Bayes Classifier . 15

2.2.4 Support Vector Machine . 16

2.2.5 Decision Tree . 16

2.2.6 Random Forest . 18

2.2.7 Neural Network . 19

2.2.8 Quadratic Discriminant Analysis (QDA) 20

2.2.9 k-Nearest Neighbors and Dynamic Time Warping (DTW) Algorithms 20

3 System Model 23

3.1 Powertraces Capture Setup . 23

3.2 Source Code Instrumentation . 25

3.3 Capturing Power Traces and Preprocessing 30

4 Classification Techniques in Power Trace 31

4.1 Experimental Setup . 31

4.1.1 Tools Used . 31

4.1.2 Benchmark Programs . 32

4.1.3 Experiment . 33

4.1.4 Evaluation Metrics . 33

4.2 Feature-based Classification . 34

4.2.1 Results –Feature-based Classification 35

4.2.2 Discussion –Feature-based Classification 38

4.3 Shape-based Classification . 38

4.3.1 Results –Shape-based Classification 39

4.4 Shape-based Method(DTW) vs. Feature-based Method 42

5 Discussion, Future Work and Conclusions 43

5.1 Discussion and Future Work . 43

5.2 Conclusion . 45

viii

References 46

APPENDICES 54

A Instrumentation 55

A.1 Instrumentation: Print Version . 55

A.2 Instrumentation: FLIP PORT Version . 56

ix

List of Tables

4.1 Benchmark programs and number of BB 32

4.2 Overall precision of the system . 39

4.3 Precision with different number of tasks 40

4.4 Precision with different number of yields 41

4.5 Classifiers’ Precision (Expressed in Percentage) 42

x

List of Figures

2.1 An example control flow graph . 10

2.2 Categories of numeric time-series distances 12

2.3 Possible use case (IDS) . 13

2.4 One hidden layer MLP [1] . 21

3.1 Capture setup . 24

3.2 Powertrace with marker . 26

3.3 Power-traces of the BBs . 28

3.4 CFG of the system with two tasks (one instance) 29

4.1 Power trace features plot . 35

4.2 Decision Tree (DT) generated by the model with max depth=2 37

4.3 Warping path of similar and dissimilar traces 40

4.4 Precision of some BB . 41

xi

List of Acronyms

ADPCM Adaptive Differential Pulse-code Modulation

BB Basic Block

CFG Control flow Graph

CMOS Complementary Metal-Oxide-Semiconductor

CRC Cyclic Redundancy Check

DT Decision Tree

DTW Dynamic Time Warping

IDS Intrusion Detection System

LCBE Live Code Block Execution

MCU Microcontroller Unit

MLP Multi-layer Perceptron

NB Naive Bayes

QDA Quadratic Discriminant Analysis

LDA Linear Discriminant Analysis

RF Random Forest

k-NN k-Nearest Neighbors

NN Nearest Neighbor

xii

Chapter 1

Introduction

Microelectronic embedded systems are an important part of our daily lives, as they have
been an important factor in many technological advances in recent decades. From handling
tasks like controlling temperature in our refrigerators to complex tasks such as automating
our cars, embedded systems have shaped the progress of our generation. Such an extensive
outreach has demanded an increase in research devoted to the development and security
of these systems. Embedded systems are deployed to run independently in a self-sufficient
manner. Once deployed, these systems behave as a black box with no capacity for runtime
debugging. This opacity of internal code execution offers the benefit of increased security.
However, it also makes system tracing, runtime monitoring, and execution reconstruction
challenging.

If the faulty behavior is observed in the production and/or deployment phase of prod-
uct development cycle where developers are no longer able to make use of debugging
tools, non-intrusive tracing is possibly the only available technique. Due to the dynamic
nature of multitasking system, some runtime anomalies are non-recurrent in consecutive
system executions and may be difficult to reproduce after recompiling or restarting the de-
vice. One popular workaround is to hard-code code snippets to aid in runtime debugging.
However, it is often challenging to think ahead and exhaust all possible error scenarios
prior to deployment. Further, due to memory constraints in deployed products, developer
prefer omitting debugging information. Added instrumentation to obtain the runtime trac-
ing could break extra-functional requirements of the system. These memory limitations
and non-reproducible nature of run-time errors advocate the necessity of a non-intrusive
run-time monitoring system to safeguard the integrity of modern electronic devices. Tra-
ditionally, run-time monitoring has been used to enforce safety properties in embedded
systems. However, corrupted firmware in embedded system makes it difficult to assure the

1

system’s safety. These problems advocate the necessity of an approach which can make
the tracing and debugging easier, not only for application software but also for the system
with corrupted firmware.

In this thesis, we propose a novel non-intrusive technique, which efficiently reconstructs
the execution trace of non-preemptive multitasking system by observing power consump-
tion characteristics. Our proposed technique can be used efficiently in the application of
embedded system safety, to overcome the problems stated above. We capture the power
consumed by the target platform as a time series data and classify those data to reconstruct
the execution trace.

Time-series classification is of significant interest in the area of machine learning these
days. Due to the usefulness of time-series representation of data in various domains such as
agriculture, medicine, politics, and industry; the classification and prediction have gained
in popularity to improve the performance of the applications. Time-series classification
has been extensively used in domains such as anomaly detection, customer flow/demand,
and political prediction since past decades. For instance, an accurate classifier for anomaly
detection in car lock system might replace the requirement of security personnel looking
for the cars. Such an extensive application of time-series classification has demanded more
research devoted to this area. Along with this growth, however, there is increasing concern
over scalable and highly accurate classification technique. Despite its application and
usefulness, there are no standard classification techniques that can classify time-series data
from any domain. The controversy about scientific evidence for classification accuracy on
high-frequency time-series data has raged unabated for over a century. Proposed techniques
are either scalable with low accuracy or accurate with low scalability. Specifically, time-
series classification of very high-frequency data is rarely seen in the literature.

Additionally, in this thesis, we will explore the possibility of using different time-series
classification algorithms in high-frequency power-trace data. The primary motive behind
this analysis is to use the power-trace data in runtime monitoring, debugging and real-time
anomaly detection of cyber-physical systems.

The proposed technique can be extended to a broad range of MCU platforms. For this
work, we chose the AVR ATMega2560, which is extensively used in cyber-physical systems
in recent decades. Although the MCU we used is simple which doesn’t contain any cache,
multicore, and pipelines, the technique can be used in the platform with cache, pipelines,
and multicores. One limitation to keep in mind is that the exact same system should be
trained(we will talk more about training power trace in chapter 3) in order to use that for
execution reconstruction.

2

1.1 Related Work

In [2, 3], Moreno et al. showed a technique for non-intrusive program tracing and debugging
through power side channel analysis where they use the power consumption characteristics
of the MCU to identify blocks of code being executed. In [4], they improve performance
through a compiler-assisted stage that maximizes distinguishability of traces for different
blocks of code. All of these works lack multitasking support, which limits the practical
applicability of the techniques. Liu et al. [5] have shown reasonable accuracy in execution
tracking by using control flow graph and source code information. Though the accuracy
is high, they capture the trace with a high-end oscilloscope with sampling frequency 1.25
GS/sec. It is shown that this method can be used in anomaly detection; however, having
the oscilloscope to capture the data and classifying the traces offline limits the usefulness
of this work in real-life systems. In [6], Eisenbarth et al. have presented side-channel
disassembler technique to obtain the sequence of CPU instructions without using the source
code information. Accuracy is the main limitation of this work which is too low for any
practical environment. Msgna et al. [7] presented the idea of side channel control flow
security in the embedded system where they collect several traces and calculate the mean
of traces to minimize the inherent and ambient noise introduced by the measurement
setup. Calculating the mean of all traces may work in the dedicated environment, but it
is not suitable for a practical application where the processing must be done on-the-fly to
ensure the security and reconstruct the execution trace of the program. Clark et al. [8]
uses the behavior monitoring system of medical devices to model permissible behavior
and detect deviation. That work, however, is limited to the simple and highly repetitive
operation of the device. The usefulness of non-intrusive systems has been highlighted in [9]
where authors have presented the hardware-assisted paradigm to extract properties of an
embedded program through static program analysis and use them to secure the system.

In regards to time-series power data classification, Deng et al. [10], use ARMA mod-
els and use Euclidean distance as a distance like score of a model to perform a nearest
neighbor classification. An early approach to time-series classification using qualitative
and quantitative methods are presented by Bakshi et al. in [11]. An overview of time-
series knowledge extraction, data classification, data clustering and relationship finding
is presented in [12]. In this paper, the author provides the analysis in different types of
similarity measures in time-series data. Authors also focus on the critical issue of measur-
ing the similarity between two sequences where the ability to deal with noise in the data,
amplitude differences and gap in time axis are the primary problems. Hidden Markov
Model representations are used in [13]. In [14], Nanopoulos et al. use neural networks
on statistical features to perform time series classification. In [15], Povinelli et al. use a

3

combination of phase space representation and Bayesian-based on Gaussian mixture mod-
els. Kadous et al. [16, 17] proposed the TClass method for time series classification with
comprehensible descriptions for multivariate time series. They extract the global features
of the time series and cluster them to train the C4.5 classifier. DTW distance like mea-
sure has gained popularity in recent years in time series classification. DTW algorithm
is first introduced by [18], and being used in time series data mining and sequence clas-
sification [19, 20, 21, 22, 23]. [24] has shown the efficient online sequence learning using
unsupervised convolutional the neural network, but lately, DTW has gained in popularity
in time series classification with the introduction of 1-Nearest Neighbor and faster com-
putation with tighter lower bound [25, 26, 27]. [28, 29, 30, 31] have shown that DTW
combined with 1 Nearest Neighbor (NN) is exceptionally difficult to beat in time series
classification.

1.2 Problem Statement and Assumptions

Our proposed technique addresses the following problem: given the power trace P and the
CFG G of a system running a program in embedded system, determine the correct node
b ∈ G executing at a given time point k.

In the context of this work, we make the following assumptions:

• Known MCU: the system runs on a known processor model. This assumption is
necessary since the relationship between power consumption and program execution
depends on the processor design and implementation.

• Input Identification: all possible combination of execution paths are generated using
random input initialization and multiple runs. We make sure that all valid paths are
generated using input randomization. The power trace associated with each basic
block may exhibit variations due to the context in which it is executed (the input
data and state). Thus, we should train the system with power traces of a set of
execution instances that is statistically representative of the power traces generation
process.

• Components Involved: targeted platform does not have a cache or any other micro-
architectural component. Additionally, we do not consider multicore execution in
this work. Presence of such component would produce high variation in power con-
sumption depending on the execution context.

4

• Control Flow Integrity: we do not consider cases such as random execution due to
memory or stack corruption, undefined behaviour deriving from uninitialized pointers
or in general invalid pointer operations, “system crashes”, etc. We also assume that
no active adversary tampers with the control flow using techniques such as code
injection [32] or code reuse [33] through buffer overflow attacks.

1.3 Contributions

The main contribution of this thesis is related to the reconstruction of the execution trace
of embedded software. Work presented in this thesis is useful in intrusion detection system
and in debugging of embedded software, more specifically in the context of multitasking
system.

• We address some important limitations of the current state-of-the-art by adding
support for co-operative multitasking scheduling 1. Our technique uses the control
flow graph (CFG) of the application program along with the power trace to identify
the most likely block of code that the system is executing at any given point in time.
To this end, we use a statistical classification approach, with DTW as the distance
metric used by the NN technique.

• In order to make the classification process of traces more accurate and faster with
fewer resources, we analyze eight widely used machine learning algorithms in power-
trace data. We discuss the time and computational requirement of different algorithm
and trade-off for using them in context of our data.

1.4 Organization of the Thesis

The remaining of this thesis advances as follows: We discuss the background required for
all the chapters in chapter 2. Chapter 3 presents the details on system model and chapter 4
presents the classification techniques in power-trace with regards to cooperative operat-
ing system. Chapter 5 includes discussion and future work followed by some concluding
remarks.

1DATE-2018 Conference Paper –Tracing of non-preemptive multitasking system

5

Chapter 2

Background

In this section, we discuss the key concepts used in our approach. In section 2.1, concepts
of the system model is discussed followed by background on machine learning algorithms
in section 2.2.

2.1 System Model Concepts

In this section, we discuss the concepts that we will use in our system. We explain about
the power consumption in microcontrollers in section 2.1.1, control flow graph in sec-
tion 2.1.3, followed by multitasking systems basics and time series classification in sec-
tion 2.1.4 and 2.1.5 respectively.

2.1.1 Power Trace Analysis

The power trace P = 〈k, pk〉 is the time series representing the power consumption of a
microcontroller as a function of time, with power being sampled periodically. where pk is
the measured (instantaneous) power consumption at time index k ∈ Z.

The total power consumed by a microcontroller depends on the static power consump-
tion and dynamic power consumption [34], which is a function of load capacitance, the
frequency of operation, and supply voltage. Static power consumption is due to leakage
current when all the inputs are at constant logic level and are not switching the level. Dy-
namic power consumption contributes significantly to the overall power consumption which

6

is due to switching of logic levels and charging and discharging of capacitive load [35]. Power
consumed by the microcontroller is calculated as:

PC = [(Cpd × fI × V 2
cc) + (CL × fo × V 2

cc)] (2.1)

where:
Cpd = power-consumption capacitance
fI = input frequency i.e., frequency at which the device(CMOS) is switching from one logic
state to another
fo = output frequency i.e., switching frequency of capacitive-load
VCC = supply voltage (V)
CL = load capacitance at output.

Power consumed ∝ load capacitance and switching frequency.
Since power consumed by microcontroller varies accordingly with the load, i.e., Comple-
mentary Metal-Oxide-Semiconductor (CMOS) transistor and component inside the con-
troller, power consumption can be analyzed to extract the information about the data
processing and operation being performed inside the microchip [36].

2.1.2 Basic Block (BB)

A basic block is a sequence of executable instruction with a single entry point at the
beginning and exit point at the end and no branches in between. Whenever the first
instruction in a basic block is executed, all the following instruction of that basic block
runs exactly once in order. Basic block forms the vertices in a control flow graph.

1 void qu i ck so r t (i n t m, i n t n) {
2 i n t i , j , v , x ;
3 i f (n <= m) return ;
4 i = m−1;
5 j = n ;
6 v = a [n] ;
7 whi le (1) {
8 do i=i +1; whi l e (a [i] < v) ;
9 do j=j −1; whi l e (a [j] > v) ;

10 i f (i >= j) break ;
11 x = a [i] ; a [i] = a [j] ; a [j] = x ;
12 }
13 x = a [i] ; a [i] =a [n] ; a [n] = x ;
14 qu i ck so r t (m, j) ;

7

15 qu i ck so r t (i +1, n) ;
16 }

Listing 2.1: Quick Sort

IR code of the quick sort from Listing 2.1 is:

(1) i := m-1
(2) j := n
(3) t1 := 4*n
(4) v := a[t1]
L0: L1:
(5) i := i+1
(6) t2 := 4*i
(7) t3 := a[t2]
(8) if t3<v goto L1
L2:
(9) j := j-1
(10) t4 := 4*j
(11) t5 := a[t4]
(12) if t5>v goto L2
(13) if i>=j goto L3
(14) t6 := 4*i
(15) x := a[t6]

(16) t7 := 4*i
(17) t8 := 4*j
(18) t9 := a[t8]
(19) a[t7] := t9
(20) t10 := 4*j
(21) a[t10] := x
(22) goto L0
L3:
(23) t11 := 4*i
(24) x := a[t11]
(25) t12 := 4*i
(26) t13 := 4*j
(27) t14 := a[t13]
(28) a[t12] := t14
(29) t15 := 4*j
(30) a[t15] := x
(31) 2 calls ...

Basic Blocks:
BB1: (1)- -(4)
BB2: (5)- -(8)
BB3: (9)- -(12)
BB4: (13)
BB5: (14)- -(22)
BB6: (23)- -(30)

2.1.3 Control Flow Graph (CFG)

The Control Flow Graph G = 〈V,E〉 is a directed graph which represents the execution
flow of the program. Where V is the set of vertices representing BBs of code, and E is
the set of edges — an edge from block BB1 to block BB2 (BB1, BB2 ∈ V) indicates
that execution of block BB2 can immediately follow the execution of block BB1. A BB

8

is the sequence of executable instruction with a single entry point at the beginning and
exit point at the end [37]. Instructions within the BB always execute in sequential order.
Execution flow transfers to the different BB depending on the last branching instruction
executed. Figure 2.1 shows an example of CFG. Power consumed by the microcontroller
is dependent on the execution flow of the program being executed. Let us consider the
control flow graph in Figure 2.1. There are six BBs in the program, BB1, BB2, BB3,
BB4, BB5 and BB6. The last statement executed in the first BB decides the next BB to
execute. If the condition in the last statement of BB4 is true the execution transit to BB5
else execution steps to BB6. CFG in Figure 2.1 can be directly related to the embedded
devices which run the code repetitively with different execution path.
The power consumed by each BB is different [7]. We can instrument the source code and
capture the power consumed of each BB. Although we cannot directly observe the control
flow transition of the programs running on the device, we can obtain the control flow
transition with power side channel analysis [38]. Given the CFG of the code running in the
MCU, normal execution always follows the CFG - any deviation from normal execution
can be traced by analyzing the CFG [39]. Since we know the control flow graph and the
power trace of all the nodes/BB on the program, any external interfering program will
have significantly different control flow path and different power traces, hence assisting
in anomaly detection. Structured control flow graph can be used to classify the malware
execution in the system accurately and to reveal the hidden code [40].

2.1.4 Multitasking Systems – Interrupts and Context Switching

Our work addresses multitasking systems where a scheduler switches contexts, giving each
task the illusion that it is the only task running on the processor. There are two main
categories of scheduling: cooperative and preemptive multitasking. Cooperative scheduling
system uses the CPU until the task is either terminated or it voluntarily gives up control of
the processor. In preemptive systems, the scheduler can asynchronously remove control of
the processor from the task that is running. Context switching is the mechanism of storing
and restoring the state of a task such that it can be resumed later when the scheduler
decides to assign the processor to said task. Interrupts in multitasking systems introduce
non-linear control flow behavior, making tracing the interrupts in the real-time embedded
system difficult [41].

9

Figure 2.1: An example control flow graph

10

2.1.5 Time Series Classification

Time series classification can be interpreted in two ways. First one is, time-series clas-
sification and the second one is time-point classification. They are different considering
the fact that earlier one has one label for one complete time series while the later one has
labels for each time point. Given a database of time series and a single label for each time
series, time-series classification classifies the future time-series that is statistically similar
to training time series. Time-point classification takes a time series and label of each time
point and classifies the future time point. e.g., customer demand, daily weather(snow, rain,
sun) are time-point classification problems while daily power consumption, ECG, human
movement (walking, running, sitting) classification, etc. are time-series classification. Sim-
ilarity measures of time series data are divided into four categories [42]; Figure 2.2 shows
the general view of distance measures in time series data. Shape-based methods compare
the shape/appearance of the time series while feature-based methods extract statistical
features that are representative of the time series. Model-based methods fit a model to
generalize the time series and compare test time series to classify. The compression-based
method looks at the compression of concatenated time series.

11

Numeric Time Series Distances

Shape-Based Feature-Based Model-Based Compression-Bssed

Euclidean DTW

Statistics Coefficients

HMM ARMA Regression CDM

Figure 2.2: Categories of numeric time-series distances

12

Intrusion Detection System
(Analysis)

Anamoly Detection

Response
(Alarm/Action)CPU Power

DatabsePower
traces

ML-Algorithms
Linear Regression, Logistic Regression

Decision Tree, SVM, Naive Bayes
KNN, K-Means, Random Forest

Dimensionality Reduction Algorithms,
Gradient Boost & Adaboost

• Properties of distance measures
• The Euclidean distance
• Dynamic Time Warping

• Uniform Scaling

This chapter is mainly
focused in determing
the accuracy of
algorithms, time and
computational
requirement.

Figure 2.3: Possible use case (IDS)

2.2 Machine Learning Algorithms for Time Series Clas-

sification

Machine Learning1 is a field of computer science that gives computers the ability to learn
without being explicitly programmed [45] [43]. Alternatively, machine learning a.k.a pre-
dictive learning explores the study of algorithms that can learn and make the prediction
from data. It is a data-driven prediction/classification approach, through building a model
from a series of past data. Predictive modeling can be divided into two classifications
approaches –Regression and pattern classification. Regression models are based on the
analysis of relationships between variables and trends in order to make predictions about
continuous variables while pattern classification assigns discrete class labels to particu-

1Major portion of this background concept is extracted from [43], and API’s are used from [44, 1].

13

lar observations. Pattern classification can be analyzed in two subcategories: supervised
learning and unsupervised learning. In supervised learning, dataset and class labels of the
respective data-set are known in advance while in unsupervised learning prediction/classi-
fication should be made on unlabelled instances of data samples.

2.2.1 Types of machine learning

Supervised learning

{
Classification

Regression

Unsupervised learning

Discovering clusters

Discovering latent factors

Discovering graph structure

Machine learning basically has 3 elements [46]:
ML Model = Representation + Evaluation + Optimization
A model is represented as a conditional probability distribution P (y|~x)(classifier) or a
decision function f(x). The set of distribution or decision function is the hypothesis space
of the model.

2.2.2 k-Nearest Neighbors

k-NN is a simple instance based non-parametric learning algorithm also known as lazy al-
gorithms [47] which is based on the principle that the dataset with similar properties lies in
the proximity. Lazy-learning algorithms require less computation time during the training
phase than eager-learning algorithms but more computation time during classification [48].
The k-NN finds the k nearest instances to the test instance and determines its class by
identifying the single most frequent class using distance metric. Several distance metrics
have been proposed and tested over the years. Distance metric used in the classification
affects the classification accuracy of the model. Some of the k-NN distance metrics are:

• Minkowsky:

d((x1, ...xn), (y1, ..., yn)) =
n−1∑
i=1

(xi − yi)2 − (xn − yn)2 (2.2)

14

• Manhattan:

d((x1, ...xn), (y1, ..., yn)) =
n−1∑
i=1

|xi − yi| =
n−1∑
i=1

|yi − xi| (2.3)

• Euclidean:

d((x1, ...xn), (y1, ..., yn)) =
n−1∑
i=1

|xi − yi| = {
n−1∑
i=1

|yi − xi|}1/2 (2.4)

2.2.3 Naive Bayes Classifier

Naive Bayes classifier is a linear classifier which is based on Bayes probability theorem [49],
and the adjective “naive” comes from the fact that the features in a dataset are mutually
independent. The assumptions of mutually independent feature can lead to poor per-
formance of NB. This model cannot accurately predict the non-linear dataset because of
unrealistic independence assumption [50]. The base probability model of NB classifier is
Bayes’ Theorem which can be summarised as:

posterior probability =
conditional probability · prior probability

evidence
(2.5)

It calculates the probability of a sample being in a particular class i given its observed
feature values.

Let xi be the feature vector of class sample i, i ∈ {1, 2, ..., n}; ωj be the representation
of class j j ∈ {1, 2, ...,m} and P (xi | ωj) be the probablity observing a sample xi given
that it belongs to class ωj. Now, as inferred from equation 2.5 posterior probablity can be
written as:

P (ωj | xi) =
P (xi | ωj) · P (ωj)

P (xi)
(2.6)

Assuming a d-dimensional feature vector, the class conditional probability is obtained as:

P (x | ωj) = P (x1 | ωj) · P (x2 | ωj) · . . . · P (xd | ωj) =
d∏

k=1

P (xk | ωj) (2.7)

The evidence P(x) is the probability of observing a feature pattern x independent of the
class label which is calculated as:

P (xi) = P (xi | ωj) · P (ωj) + P (xi | ωC
j) · P (ωC

j) (2.8)

Suppose we have a feature sample xi, NB classifiers works as: classify sample xi as ω1 if
P (ω1 | xi) > P (ω2 | xi) else classify the sample as ω2.

15

2.2.4 Support Vector Machine

Support Vector Machine is a classifier which performs classification by finding the hyper-
plane which maximizes the margin between the classes [51]. A line splitting the input
samples into two classes is a hyperplane. In practice, SVM is implemented using a ker-
nel which is the basis of learning hyperplane. SVM is typically used when samples of two
classes are closer and harder to classify. The support vector machine searches for the closest
points, which it calls the “support vectors”. SVM connects the support vectors to draw the
best separating line called a hyperplane that bisects and is perpendicular to the connecting
line. Since we already have the hyperplane created, all the incoming input samples are
separated by this hyperplane [52]. SVM works best for binary type classification problem.

Let x be a n-dimensional feature vector. y be the class (i.e., the output of the SVM);
y ∈ {−1, 1}. P and Q be the parameters of the SVM which are learnt during the training
phase. The class of the ith sample ((x(i), y(i))) is determined as:

y(i) =

{
−1 if PTx(i) +Q ≤ −1
1 if PTx(i) +Q ≥ 1

(2.9)

SVM always maximizes the distance between two decision boundaries by taking min
p

‖p‖
2

.

SVM should always classify all the input samples which means:

y(i)(PTx(i) + b) ≥ 1,∀i ∈ {1, . . . , N} (2.10)

Equation 2.10 leads to the optimization problem. Optimization process involves the calcu-
lation of inner products. The function that maps the input samples to the inner product
is called a Kernel. There are many kernel implementation in the literature to choose from,
most commonly used ones are RBF Kernel, Linear Kernel, and Gaussian Kernel. Typi-
cally, [53]using a linear kernel when the number of features is larger than the number of
observations and using a Gaussian kernel when the number of observations is larger than
the number of features maximizes a classification accuracy and computational efficiency.

2.2.5 Decision Tree

DT are a non-parametric supervised learning algorithm for classification. DT works by
learning decision rules inferred from the data features and creating a model to classify
the future input data. DTs have been used in many research because of its easiness to
understand and visualization property. With DTs, it is possible to validate a model using

16

statistical tests which increases the reliability of the model and also easy to interpret. One
disadvantage of using DT is overfitting; learners can create an over-complex tree that does
not represent the general notion of data precisely. Since DT’s works on decision rule in
every step, one small variation in data might result in generation of completely different
tree. The cost of predicting is logarithmic in the number of data points used to train the
tree. Total cost of entire tree is:

O(nfeaturesn
2
sampleslog(nsamples))

There are various DT algorithms [54, 55, 56] such as: ID3, CART, C4.5 and C5.0. ID3
creates a multiway tree finding, for every node, the categorical features that will yield the
largest information gain for a ceratin category. ID3 and C4.5 are almost similar except
C4.5 removes the restriction that features must be categorical. C4.5 converts the trained
tree into rules and determines the accuracy of rules to maximize the prediction. CART in
the other hand supports numerical target variables and constructs binary trees using the
feature that yields the largest information gain at each node.

Given a training vector wi ∈ Rn, i = 1, ..., l and a label vector z ∈ Rl, DT recursively
creates a tree by grouping the samples with the same label together. Each node of the
tree is associated with a particular set of records R that are categorized by a specific rule
on a feature. Let’s say a attribute P can be tested as P ≤ x, the set of records R can be
partitioned into two trees as: Rltree = {r ∈ R : r(P) ≤ x} and Rrtree = {r ∈ R : r(P) > x}
Similarly, all the attributes of the records are partitioned recursively. The accuracy of the
best split is measured out by measuring impuritymeasures. The impurity of the parent
node has to decrease as we traverse down the tree. Let (E1, E2, . . . , En) be a split induced
and impurity measure I.

∆ = I(E)−
k∑

i=1

|Ei|
|E|

I(Ei) (2.11)

pj =
|{t ∈ E : t[C] = cj}|

|E|
(2.12)

H (E) = 1−
Q∑

j=1

p2j (2.13)

Where,Pj is a fraction of records in E of class cj, and Q is the total number of classes.

17

2.2.6 Random Forest

Random Forest is one of the popular methods in machine learning. It is an ensemble
type of machine learning algorithm called bootstrap aggregation or bagging. An ensemble
method combines the predictions from different machine learning algorithms to make a
more powerful and accurate classifier than any individual learning algorithms. Bootstrap
method is used for estimating statistical quantities from the test samples. The Bootstrap
Aggregation algorithm creates multiple different models from a single training data-set
while random forest algorithm makes a small tweak to bagging and results in a highly
accurate classifier.

Bootstrap method [57] is a statistical method for estimating a quantity from a data
sample such as mean, variation, standard deviation, etc. Bootstrap method creates a
random sub-samples of our dataset with replacement and calculates a statistical quantity
of each subsample. Finally, it calculates the statistical quantity using the result of each
sub-sample. For example, lets say we used three resamples and got the standard deviation
values 2.3, 4.5 and 3.3. After calculating the average of these numbers, we could take the
estimated sd of the data to be 1.10. These quantities are estimated as learned coefficients.
Bootstrap algorithm is used to reduce the variation for the algorithms that have high
variance. Bagging is used in DT algorithm to reduce the high variation and inturns creating
a Random forest classifier.

The result of prediction from random forest [58] is uncorrelated or weakly correlated. In
CART, when selecting a split point, the learning algorithm looks through all variable values
in order to select the most optimal split-point that minimizes the error. The random forest
algorithm changes this procedure so that the learning algorithm is limited to a random
sample of features searches. The number of variables that can be searched in each split (p)
is input to the classifier [59].

(2.14)

For the classification good split point p is:

√
q (2.15)

For regression good split point value p is:

q

3
(2.16)

18

Where p is the number of randomly selected features that are available to search at a split
point and q is the number of input varibles

(2.17)

2.2.7 Neural Network

Neural Networks are the computing systems inspired by the biological neural networks;
they learn to do task progressively looking at the previous data without being programmed
for the specific task. NN is based on a collection of units called artificial neurons; each
neuron can transmit the information to the following neurons. NN consists of layers of
neurons, each layer performing different kinds of operation/calculation from first(input)
layer to output layer. The main idea behind the NN operation is similar to the biological
brain which has the capacity of backpropagation, information adjustment, and bidirectional
information transfer. A neuron in NN receives input, changes its internal state according
to the input, and produce output relying on the input data and internal state/activation.
There are four essential components of neural network [60]:

• Neuron: A neuron which receives an input and consists of activation function, thresh-
old, and output function/identity function.

• Connections and Weights: Each neuron has a connection, and connection has an
assigned weight wpq. Where p is the predecessor and q is the successor neuron.

• Propagation function: Propagation function computes the input to the successor
neuron from the data of predecessor neuron.

Fj(t) =
∑
i

Outputi(t)wpq (2.18)

• Learning rule: This is the learning algorithms to produce the desired output, which
typically modifies the parameter of neural networks such as weights and thresholds.

Learning algorithms have gained in more attraction these days to find the best optimal
solution possible. This requires us to define a cost function C : F → R such that no
solution has the cost less than the optimal solution, i.e., C(S∗) ≤ C(f)∀f ∈ F . There are
many variants of a neural network; typically the variants are obtained by using different
learning algorithms/rules. In this thesis, we use Multi-layer Perceptron (MLP) (MLP)[1]

19

for analyzing the power traces. MLP is a supervised learning algorithm that learns a
function f(·) : P n → Pm by training on a dataset, where n and o are the numbers of the
dimension for input and output respectively. Figure 2.4 shows an example of one hidden
layer MLP.

2.2.8 Quadratic Discriminant Analysis (QDA)

Quadratic Discriminant Analysis (QDA) is a classic classifier with quardatic decision sur-
face. Linear discriminant analysis is supervised dimensionality reduction technique which
works by projecting the data in the direction of maximum separation between the classes.
Both LDA and QDA are derived from a probabilistic models which model the class con-
ditional distribution of the data P (X|y = k) for each class p. Predictions uses Bayes
rule:

P (y = p|X) =
P (X|y = p)P (y = p)

P (X)
=

P (X|y = p)P (y = p)∑
l P (X|y = l) · P (y = l)

(2.19)

We select the class p which maximizes this conditional probability. For QDA, P(X—y)
is modelled as a multivariate Gaussian distribution with density:

p(X|y = k) =
1

(2π)n|Σk|1/2
exp

(
−1

2
(X − µk)tΣ−1k (X − µk)

)
(2.20)

For this classifier, we need to estimate the class priors P(y=k), the class means µk, and
the covariance matrices.

2.2.9 k-Nearest Neighbors and Dynamic Time Warping (DTW)
Algorithms

DTW is an algorithm to find the optimal match between two time series which may vary
in speed. Time series are wrapped non-linearly in time dimension independent of the non-
linear variation along the series which may need compression or expansion in time in order
to find the best mapping. DTW algorithm is first introduced by [18], and being used in
time series data mining and sequence classification [19, 20, 21, 22, 23]. [24] has shown the
efficient online sequence learning using unsupervised convolutional the neural network, but
lately, DTW has gained in popularity in time series classification with the introduction of
1-Nearest Neighbor and faster computation with tighter lower bound [25, 26, 27]. [28, 29,

20

Figure 2.4: One hidden layer MLP [1]

21

30, 31] have shown that DTW combined with 1-Nearest Neighbor achieves near-optimal
performance in time series classification.

The DTW algorithm compares two time series A and B where A = (a1, a2, a3, · · · , am)
and B = (b1, b2, b3, · · · , bn) of length m and n, respectively. To compare the similarity
between two time series A and B, we need local distance matrix between each element of
the series. The distance between (a, b) is small if they similar to each other. To measure
the local cost between each element in time series let us define an optimal value function
D(i, j) as the distance between A(1 : i) and B(1 : j) that has the mapping path from (1, 1)
to (i, j). The optimal minimum path can be calculated using the dynamic programming
approach as:

D(i, j) = |A(i)−B(j)|+min

D(i− 1, j)

D(i, j − 1)

D(i− 1, j − 1)

(2.21)

where D(1, 1) = |A(1)−B(1)|

Finally, the calculated D(m,n) is the optimal path. The warping path obtained from
this calculation is subjected to several constraints [30] such as the warping path must start
and end at diagonally opposite corner of the matrix, steps in the matrix are restricted to
adjacent cells and points should be monotonically spaced in time.

k-NN is a non-parametric [61] method of classification which outputs the class by a
majority vote of its neighbors, with the object being assigned to the class with most votes
among its k-nearest neighbors. Typical K-NN uses Euclidean distance as a measure of
distance while DTW uses the dynamic time warping distance like score as a measure of
distance. 1-nearest neighbor merely outputs the closest matching class. 1-nearest neighbor
with DTW calculates the distance along the warping path and outputs the closest match.

22

Chapter 3

System Model

In this chapter, we explain our system setup which is used for power data acquisition. We
address the source code instrumentation techniques in section 3.2 and data preprocessing
steps in section 3.3.

3.1 Powertraces Capture Setup

As described in section 1, our proposed technique uses the concept of non-intrusive side
channel power analysis to determine the code block being executed by the MCU. We
capture the power consumption by adding a shunt resistor in series with the power-in line
going to the MCU so that a voltage proportional to the instantaneous power consumption
is produced. The shunt resistor is chosen such that the voltage drop that it causes is small
enough that the normal functionality of the MCU is not affected. Since the produced
voltage is in the order of a few millivolts, we added an analog input stage to amplify it for
further processing. The signal is then digitized by an analog to digital converter (ADC),
which samples at 14-bit resolution at a frequency of 2 MHz. The converted samples are
captured using a Saleae Logic Analyzer. Figure 3.1 shows the power capture setup of the
experiment. Port Bit Marker in Figure 3.1 is used for the training phase of the classifier:
it allows us to segment the power trace into power trace segments corresponding to BBs.
To this end, the MCU port bit (Port Bit Marker) toggles the logic level at the beginning
of each BB.

In our experiments, we use a custom designed non-preemptive multitasking operat-
ing system for AVR microcontroller that supports basic multitasking with yield/context

23

+V

CPU

Shunt
Resistor

Port_Bit_Marker

Logic AnalyzerDiff. Amp.
ADC

(14-bit,
2MSPS)

PC

Flashing CPU

USB

Figure 3.1: Capture setup

switching and Round-Robin scheduling. To show the efficacy of our approach on the indus-
trial real-time system, we chose four application programs to run each as one task: Cruise
Control, Water-level Control, Adaptive Differential Pulse-code Modulation (ADPCM) en-
coding, and Cyclic Redundancy Check (CRC) computation. Cruise Control and Water-
level Control are obtained directly from the sample SCADE [62] models and run without
any modification in the program.1 ADPCM and CRC are obtained from MiBench [63].

To carry out the experimental evaluation of our technique, the source code is instru-
mented to allow us to obtain the power consumption information of each BB (section 3.2
discusses this in more detail), which is therefore used as the training data for our classifiers.
Instrumentation done in this phase does not have any effect on the functionality and the
execution flow of the program. Moreover, the code instrumentation does not introduce
undesirable overhead in the captured power traces. During classification, we use a non-
instrumented version of a program where the power trace of a complete program is fed as
input to the resulting trained system which gives the execution trace.

The power trace associated with each BB may exhibit variations due to the context in
which it is executed (the input data and state). Thus, we should train the system with
power traces of a set of execution instances that is statistically representative of the power

1 Except for the instrumentation necessary for the experiments.

24

traces generation process. To this end, we used randomization for all program inputs and
replicate the experiment multiple times. At the end of the training phase, we make sure
that we have the power-trace data for all the BB of a complete system. Plot(a) in figure 3.2
shows the power trace and plot(b) shows the marker used to fragment the traces of each
BB.

3.2 Source Code Instrumentation

We used the LLVM optimizer and analyzer [64], -dot-cfg pass, to extract the CFG of the
programs. Sometimes the BB produced by LLVM are too short(1-2 lines), having very
few samples in power trace fragment, for the classifier to work. To address this issue, we
merge short CFG nodes to create a large CFG node(single entry, single exit node) without
deviating from the original control flow of the program. Appendix A.3 shows the part code
to automate the instrumentation process.

We created two instrumented versions; one that executes on the target MCU, and
another version that runs offline on a workstation. Printf instrumented version is the in-
strumented code that runs on the workstation, and flip port instrumented version is the
instrumented code that runs on the target. In Printf instrumented version, we instrument
the source code by adding a print statement at the beginning of each BB which prints the ID
of the BB that is currently executing and the yield information at the end of BB. In flip port
instrumented version, we instrument the source code by adding the FLIP PORT BIT state-
ment in the exact same location as we did for the printf instrumented version. This version
executes on the target and uses a general purpose input/output (GPIO) pin to signal transi-
tions between BBs including context switch by toggling the port bit. The instrumentation
simply places a pin-toggle statement at the beginning of each BB. This information is
captured using the 16th bit of logic analyzer as shown in Figure 3.1. Listings 3.1 and 3.2
show the instrumentation technique as we discussed above 3. Printf instrumented version
gives the actual trace which is processed to get the ground truth for our classifier. Ex-
ecution path of program changes as input changes. For both versions of the program to
follow the same execution path, we need same input for both of them. To achieve this,
randomized.h is generated using a pseudo-random number generator which produces the
random values to initialize the inputs. We use the resulting randomized.h in both versions
such that the printf version and flip port version follow the same execution path every time.

3Complete instrumentation is shown in appendix A

25

(a)

(b)

Figure 3.2: Powertrace with marker

26

1 Cru i s eCon t r o l l e r f un c t i on ()
2 {
3 /∗ va r i a b l e s f o r c r u i s e c on t r o l ∗/
4 p r i n t f (”CruiseControlNode0x13b5fe0 \n”) ;
5 Detec t I fPeda l I sPre s s ed () ;
6 p r i n t f (” y i e l d \n”) ;
7 }

Listing 3.1: Printf instrumented version

1 Cru i s eCon t r o l l e r f un c t i on ()
2 {
3 /∗ va r i a b l e s f o r c r u i s e c on t r o l ∗/
4 FLIP PORT BIT ;
5 Detec t I fPeda l I sPre s s ed () ;
6 FLIP PORT BIT ;
7 y i e l d () ;
8 }

Listing 3.2: Flip port instrumented version

Since we run the printf instrumented versions of each program (task) individually, we
need to combine the actual traces of both tasks to get an overall actual trace as it happens
during the execution on the MCU. As an example to illustrate this process, suppose that
the trace (obtained from the printf instrumented version) of cruise control is:

A → B → yield → C → yield ,

and the trace of water level control is:

D→ yield → E → F → yield.

Given the Round-Robin scheduler, the overall (global) trace of the complete system is:

A→ B︸ ︷︷ ︸
T1

→ yield︸ ︷︷ ︸
C.S

→ D︸︷︷︸
T2

→ yield︸ ︷︷ ︸
C.S

→ C︸︷︷︸
T1

→ yield︸ ︷︷ ︸
C.S

→ E → F︸ ︷︷ ︸
T2

→ yield.︸ ︷︷ ︸
C.S

For the systems having more than two tasks, the overall trace can be obtained simi-
larly by considering the round-robin scheduling and cyclically moving through the tasks.
Alternatively, we can get the actual trace by simulating the OS (with same tasks in flip
port version) with an IDE such as AVRSTUDIO. We also verified the correctness of actual
trace by simulation. Figure 3.4 shows the CFG of the overall system running on the device
where subgraph on the left side represents the CFG of the cruise control program and
subgraph on the right represents the CFG of the water-level controller. Figure 3.3 shows
the power traces of few basic block in the multitasking system.

27

10000

11000

12000

13000

0 1000 2000 3000 4000 5000

B
B

 #
1

9000

9500

10000

0 1000 2000 3000 4000 5000

B
B

 #
2

12000

13000

14000

15000

0 1000 2000 3000 4000 5000

B
B

 #
3

11000

12000

0 1000 2000 3000 4000 5000
Trace samples

B
B

 4
#

Figure 3.3: Power-traces of the BBs

28

Figure 3.4: CFG of the system with two tasks (one instance)

29

3.3 Capturing Power Traces and Preprocessing

We captured the power trace using the logic analyzer whose 16th bit was connected to a
port bit of MCU and bits 1-15 delivered the power data. We generate traces for each BB
from the entire trace using FLIP PORT BIT (each logic level change signifies either the
transition of a BB or a context switching). We replicate the trace capture of the system
approximately 1000 times to get 1000 traces of each basic block. At this point, we have
traces of each BB with the label(ground truth). Since powertrace is a time series data, any
suitable machine learning algorithm can be used to classify. We will focus on feature-based
and shape-based method of classification in chapter 4.

30

Chapter 4

Classification Techniques in Power
Trace

In this chapter, we discuss the classification techniques in power trace data which is cap-
tured as a time series data. As described in section 2.1.5, time-series classification can
be broadly divided into four categories –shape-based, feature-based, model-based, and
compression-based. In this chapter, we focus on the feature-based and shape-based model.
For feature-based classification, we extract various features from time series and train a
classifier with those features. For the shape-based method, we calculate the dynamic time
warping distance and use k−NN in DTW distances.

4.1 Experimental Setup

In this section, we provide more insight on tools used, benchmark programs and evaluation
metrics.

4.1.1 Tools Used

We use ATMega2560 MCU clocked at 1 MHz with STK600 evaluation board in our exper-
iment. Saleae Logic Analyzer [65] was used to capture traces into the laptop as explained
in 3.1. Lenovo T450 laptop equipped with Intel R©coreTM i5-5200U CPU @ 2.20GHz was

31

used to capture traces. We use a custom designed non-preemptive multitasking operat-
ing system for AVR microcontroller that supports basic multitasking with yield/context
switching and Round-Robin scheduling.

4.1.2 Benchmark Programs

To show the efficacy of our approach on the industrial real-time system, we chose four ap-
plication programs to run each as one task: Cruise Control, Water-level Control, ADPCM
encoding, and CRC computation. Cruise Control and Water-level Control are obtained
directly from the sample SCADE [62] models and run without any modification in the pro-
gram.1 ADPCM and CRC are obtained from MiBench [63]. Table 4.1 shows the number
of BBs in each function. We tested all the classification algorithms with the same data.

Table 4.1: Benchmark programs and number of BB

Task Name Function #of BB

CruiseControl CruiseStateManagement 7

CruiseControl Controller-Node 4

CruiseControl CruiseSpeedManagement 1

CruiseControl ThrottleCmd 1

WaterLevel DecideAlarm 2

WaterLevel Controller-Node 2

WaterLevel DecideOutFlow 3

WaterLevel DecideInFlow 2

ADPCM Encoder 4

ADPCM Decoder 4

CRC CRC Computation 2

Total – 32

1 Except for the instrumentation necessary for the experiments.

32

4.1.3 Experiment

By replicating the experiment 1000 times over the same configuration/setup, settings,
and the environmental condition, we determine how large error should be deemed to be
statistically significant. Since we are initializing the input randomly, the CFG is different
in each run due to which some BB executed less number of times. We run an additional
experiment to make 1000 traces for each basic block. We train the system with 1000 traces
of each BB and classify continously. In continuous classification, we ran the experiment
on traces captured for thirty minutes which is roughly 900 execution of each basic block.
For the experimental purpose, we calculated the time it took to run all four programs of
multitasking system in order. On an average, it took 0.6 sec to execute all four program(one
cycle) in order. We classified continuously on the traces captured for 30 minutes which is
approximately 1080 cycle –considering 25 BB for each cycle 27000 traces in total.

The length of CFG, number of yields, and number of tasks are the factors considered in
the experiment. To show the efficacy of our technique in the real-time systems, we tested
our classifier with a multiple number of yields(8, 12, 15, and 17) and a multiple number of
tasks(2, 3, and 4).

4.1.4 Evaluation Metrics

We use the positive predictive value (precision in Equation (4.1)) to evaluate the perfor-
mance of the classifier. Since our classifier always outputs one of the options all the time,
whether it is true positive or false positive; there is no notion of recall, specificity, and fall-
out in our experiment. Positive predictive value (PPV/P) is defined as the ratio of total
True positive (TP) instances to the sum of True Positive instances and False Positive (FP)
instances. In our case, TP are instances where the classifier correctly determines the basic
block currently executing in the MCU while FP are instances of incorrect classifications.

P =
TP

TP + FP
(4.1)

where P denotes the precision, TP is the total number of instances with correct predic-
tion (true positives), FP is the total number of instances with an incorrect prediction
(misclassifications or false positives).

Measuring the Precision: To measure the precision, we take the actual execution
trace running in offline mode, i.e., printf instrumented version, as the ground truth. We
then compare the output of the classifier with the actual trace to determine the true

33

positives (correct classifications) and false positives (misclassifications). Let us consider
the instance where classified sequence is: BBA → BBB → yield → BBC → BBE and
the actual sequence is BBA → BBB → yield → BBC → BBD. So, FP = 1, TP = 4
and precision P = 80% as calculated from equation 4.1. Average precision is calculated
with several runs using arithmetic mean. Similarly, to calculate the precision of individual
BB, we use TP and FP from several runs. Let us consider one BB CruisControlNodeA 1
which is accurately classified in 9 runs out of 10. So, FP = 1, TP = 9 and the precision
P of CruisControlNodeA 1 is 90%. We calculate precision of all the BB similarly.

4.2 Feature-based Classification

In this section, we address the classification algorithm comparison by extracting features
from the power-trace time-series data. A feature is an individual measurable property
which statistically defines a time series. We extract following features from the time series
and train the classification algorithm:

• amplitude

• maximum

• max slope

• median

• median absolute deviation

• percent close to median

• minimum

• skew

• weighted average

• std

All the classification algorithms are run with the features extracted. We will discuss
the time and computational requirement of most widely used classification techniques such
as k-NN, SVM, Gaussian Method, DT, Random Forest, Neural Network, and Quadratic
Discriminant Analysis. To this end, we compare the accuracy vs. time and computational
requirement trade off of all the classification methods mentioned above. Figure 4.1 shows
the plot of extracted feature for one BB.

34

2000

3000 amplitude

9000
10000
11000

maximum

1750

2000 max_slope

7000
8000 median

600

800

Am
pl

itu
de

median_absolute_deviation

0.3

0.4
percent_close_to_median

4000

6000
minimum

0.5
0.0

skew

800
1000
1200

std

0 50 100 150 200

7.75
8.00
8.25 Weighted Average

Figure 4.1: Power trace features plot

4.2.1 Results –Feature-based Classification

In this section, we discuss the results of feature-based classification algorithms. We ran the
experiment with a different number of task and a different number of yield as described
in section 4.1.3. In feature-based classification, we found that varying the number of task
and number yield does not affect the precision. Table 4.5 shows the precision comparison
of different methods. Testing time is calculated per 100 traces classification.

35

k-Nearest Neighbors

We use Euclidean distance (equation 2.4) as the measure of distance to classify the power
trace.

• Precision of the model: 78%

• Testing time: 0.10 Sec

Support Vector Machine

We evaluated this classification technique using two kernels: a) Linear Kernel b) RBF
Kernel. SVM linear kernel use the equation 2.9 to perform the classification. Results of
Linear Kernel:

• Precision of the model: 76%

• Testing time: 10.27 Sec

Results of RBF Kernel:

• Precision of the model: 37%

• Testing time: 1.08 Sec

Gaussian

The evidence P(x) is the probablity of observing a feature pattern x independent of the
class label which is calculated using Equation 2.5 and Equation 2.8.

• Precision of the model: 73%

• Testing time: 0.09 Sec

36

X[7] <= 0.3474
gini = 0.9288

samples = 2293
value = [121, 67, 67, 65, 55, 250, 56, 122, 250, 31, 23, 67, 121, 66

129, 54, 250, 250, 128, 121]

X[8] <= 666.4849
gini = 0.9244

samples = 2016
value = [121, 67, 67, 65, 55, 245, 56, 122, 250, 31, 23, 62, 121, 66

129, 35, 250, 2, 128, 121]

True

X[1] <= 8330.0
gini = 0.1931
samples = 277

value = [0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 5, 0, 0, 0, 19, 0, 248
0, 0]

False

gini = 0.255
samples = 284

value = [39, 0, 1, 0, 0, 242, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0
0, 0]

gini = 0.9204
samples = 1732

value = [82, 67, 66, 65, 55, 3, 56, 122, 250, 31, 23, 62, 120, 65
129, 35, 250, 2, 128, 121]

gini = 0.4872
samples = 28

value = [0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 4, 0, 0, 0, 19, 0, 0
0, 0]

gini = 0.008
samples = 249

value = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 248
0, 0]

Figure 4.2: DT generated by the model with max depth=2

Decision Tree and Random Forest

We use an optimised version of the CART algorithm from scikit learn. Impurities (Gini
Index) and entropy are calculated using Equation 2.11, 2.12, and 2.13. We observed that
the model with max depth= 95 could produce maximum classification accuracy. Figure 4.2
shows the DT generated by the model with maximum depth=2. We use max depth=10
and n estimators=10 for Random Forest.

• Precision of the model: 81%

• Testing time: 0.19 Sec

Classification result of Random Forest Classifier:

• Precision of the model: 89%

• Testing time: 0.20 Sec

Neural Network

We use MLP algorithm that trains the model using backpropagation as discussed in 2.2.7.
We use MLPClassifier(hidden layer sizes=(15,), random state=1, max iter=10, warm start=True).

• Precision of the model: 38%

• Testing time: 0.77 Sec

37

Quadratic Discriminant Analysis (QDA)

Quadratic decision boundary is generated by fitting class conditional densities to the data
using Bayes rule. To achieve this, the class conditional probability is calculated using
Equation 2.19.

• Precision of the model: 72%

• Testing time: 0.10 Sec

4.2.2 Discussion –Feature-based Classification

In this section, we analyzed different classification algorithms in power trace data. The
results of this experiment indicate that common classification techniques we tested are not
so useful for our data. Since the power-trace data is different to usual time-series data
in many sense, it may be difficult to incorporate those features in presented classification
algorithms. Usually, time series data are fixed length and perfectly synchronized in time
which is not the case in power-traces. Power-traces of different BB has different execu-
tion time and hence different length of traces. This poses a problem in the classification
algorithm which works on similarities of features extracted.

Although, we got a reasonable accuracy (88%) with Random Forest classifier the train-
ing time of this classifier is very high (10 times more than K-NN). However, with a large
sample size, caution must be applied, as the findings might not be able to generate the
similar accuracy. Training time of K-NN classifier is almost zero but testing time is quite
high in comparison to other tested classification algorithms. Contrary to expectations,
neural network in our data resulted in very low accuracy (38%). It is difficult to explain
this result, but it might be related to the temporal information of the time-series data
at any time interval. These results provide further support for the need of shape-based
classification techniques such as DTW. In the next section, we will discuss the use of DTW
classifier in the context of execution reconstruction of the cooperative operating system.

4.3 Shape-based Classification

In this section, we use DTW as the distance metric used by the nearest neighbors (NN)
classification technique. The time complexity of each DTW comparison is O(n ·m) where
n and m are the lengths of each time series. Due to this, the time taken to calculate the

38

Table 4.2: Overall precision of the system

Application (Task) Precision (%)

Water-level Controller 97.28

Cruise Controller 95.64

ADPCM 97.33

CRC 98.00

Yield 98.26

Average 97.30

warping distance of testing time series with all the training time series is considerably large.
To reduce the number of comparisons, we average the power traces and generate one power
trace for each BB. While this in principle means that we use the nearest centroid rule and
lose the benefits of the 1-NN with DTW technique, it has been shown that the performance
is similar for these two techniques [66]. Though they use warping as part of the averaging
process, this is necessary for the general case, where the average of different time series
instances may produce a result completely dissimilar to all the averaged samples. This is
not the case in our system, as different instances of execution of a BB still execute the same
operations, and it is only the data that varies, which has an effect with the characteristics
of added noise. Figure 4.3 shows the warping path of the matching and the unmatching
sequences. Plot (a) in Figure 4.3 is the warping path of the matching time series, and
plot (b) is the warping path of dissimilar time series. Two similar time series have a path
close to the diagonal of the matrix while dissimilar time series have paths that deviate
from the diagonal.

Since the classification process is continuos, we need to determine the sizes of the traces
as we continue to classify. We extract all possible sizes from the start point of the trace
according to lengths of basic blocks in the master database and compare them against each
trace of the master database to output the optimally aligned trace. We determine the next
segmentation point from the CFG and repeat the process.

4.3.1 Results –Shape-based Classification

Table 4.2 shows the precision of a four-task multitasking system. From this table, it is
evident that our technique can accurately produce an execution trace of a multitasking

39

d$index1

d$
in

de
x2

xt
s

0 100 200 300 400 500

20
00

30
00

yts

3500 2500

0
10

0
20

0
30

0
40

0
50

0

(a) DTW path for similar traces

d$index1

d$
in

de
x2

xt
s

0 50 100 150 200 250
28

00
32

00

yts

3500 2500

0
10

0
20

0
30

0
40

0
50

0

(b) DTW path for dissimilar traces

Figure 4.3: Warping path of similar and dissimilar traces

Table 4.3: Precision with different number of tasks

Number of Tasks

2 3 4

Precision (%) 96.50 96.83 97.30

40

0

25

50

75

100

A
D

P
C

M
−N

od
e0

x2
0c

cb
50

A
D

P
C

M
−N

od
e0

x2
0e

aa
70

C
R

C
−N

od
e0

x2
3c

2e
b0

C
ru

is
eC

on
tro

lN
od

e0
x1

3b
5f

e0
C

ru
is

eC
on

tro
lN

od
e0

x1
3b

61
00

C
ru

is
eC

on
tro

lN
od

e0
x1

3b
62

80
C

ru
is

eS
pe

ed
M

gt
N

od
e0

x2
63

a6
c0

C
ru

is
eS

ta
te

M
gt

N
od

e0
x1

f4
a9

e0
C

ru
is

eS
ta

te
M

gt
N

od
e0

x1
f4

ad
a0

C
ru

is
eS

ta
te

M
gt

N
od

e0
x1

f4
af

e0
C

ru
is

eS
ta

te
M

gt
N

od
e0

x1
f4

bd
00

C
ru

is
eS

ta
te

M
gt

N
od

e0
x1

f4
c0

60
W

L−
D

ec
id

e_
A

la
rm

−N
od

e0
x1

61
f7

60
W

L−
D

ec
id

e_
A

la
rm

−N
od

e0
x1

62
00

80
W

L−
D

ec
id

e_
A

la
rm

−N
od

e0
x1

62
02

70
W

L−
D

ec
id

e_
In

_F
lo

w
−N

od
e0

x1
cf

06
e0

W
L−

D
ec

id
e_

In
_F

lo
w

−N
od

e0
x1

cf
09

20
W

L−
D

ec
id

e_
O

ut
_F

lo
w

−N
od

e0
x5

e4
1a

0

Y
ie

ld
/C

on
te

xt
_S

w
itc

h

Basic Blocks

P
re

ci
si

on

94

96

98

100
Precision

Figure 4.4: Precision of some BB

Table 4.4: Precision with different number of yields

Number of Yields

8 12 15 17

Precision (%) 97.3 97.24 97.14 97.23

41

system that is running on the embedded device. We also ran our experiment with two,
three, and four tasks, and with multiple numbers of yields. Table 4.3 presents the precision
of an overall system with a multiple number of tasks and Table 4.4 presents the precision
of an overall system with a multiple number of yields. From Table 4.4, it can be seen that
the number of context switches in the application does not affect the precision; however,
the precision changes by ±1% when varying the number of tasks (Table 4.3). The major
cause of misclassification is due to the similar type of instruction being executed in the BB.
Interestingly, the total of 230 context switches in a multitasking system has 226 accurate
classifications. A probable explanation for the highly accurate classification of BB ‘yield’
is that its power consumption profile is unique with respect to all other BBs. Figure 4.4
shows the precision of individual BBs. We can see from Figure 4.4 that the precision of
some BBs is 100% while an average precision of an overall system is 97.3%.

4.4 Shape-based Method(DTW) vs. Feature-based

Method

Table 4.5: Classifiers’ Precision (Expressed in Percentage)

Shape-based Feature-based Classification

Number of Task DTW k-NN DT RF QDA Gaussian SVM

2 96 78 81 88 72 73 76

3 96 78 81 88 72 73 76

4 97 78 81 88 72 73 76

As seen in Table 4.5, the precision of the shape-based method, i.e., DTW, is consistently
more in comparison to feature-based methods. Since DTW allows the elastic shifting along
the time-axis to accommodate the shape changes in time, it is more robust for time-series
data which varies in shape. In the feature-based methods, while extracting features from
a time series, we lose temporal information which is accounted in DTW. A possibility of
elastic shifting of extracted features along the time axis could improve the classification
accuracy of feature-based methods.

42

Chapter 5

Discussion, Future Work and
Conclusions

This chapter presents the discussion on all the work presented in this thesis followed by
concluding remarks.

5.1 Discussion and Future Work

As mentioned in the literature review, run-time monitoring, intrusion detection and debug-
ging of the embedded software are always the central issues in the product development.
The primary question in this research was to analyze the suitable mechanism for non-
intrusive run-time monitoring of embedded software. In this end, prior studies that have
noted the usability of side channel analysis as a method of non-intrusive tracing, however,
they do not consider highly sophisticated code and conditions with multitasking system. In
this thesis, we work upon the side channel power analysis to solve the problem of run-time
monitoring, intrusion detection and debugging of the cooperative multitasking system.

An initial objective of the research was to include the multitasking support in the non-
intrusive program tracing technique and to identify the suitable classification algorithm for
power-traces. Although the area of machine learning is growing at a fast pace; very little
information was found in the literature on the question of a suitable classification algorithm
for power-traces. Chapter 4 set out with the aim of assessing the machine learning classi-
fication algorithms. The results of this assessment indicate that no already implemented
classification techniques can be applied to our data. Usually, time series data are fixed

43

length and perfectly synchronized in time which is not the case in power-traces. Power-
traces of different BB has different execution time and hence different length of traces.
This nature of data poses a problem in feature-based classification techniques. On the
question of classification category of the time-series data, the result from section 4.2.1 gives
a substantial proof that we need a shape-based classification for our data. The maximum
classification accuracy we got from the experiment of eight widely used machine learning
algorithms was 89% with random forest classifier. To obtain this result with random forest
classifier, we needed to determine many dependent parameters of the algorithm, which in
general are determined using trial and error method(could be a limitation for traces from
different MCUs). It is difficult to explain this results, but this might be related to the
correlated feature of the similar relevance of the data. There are, however, other possible
explanations such as overfitting of the data, biased nature of random forest with the entries
with more levels, etc. Since this algorithm was not converging to maximum accuracy for
all the data we tested, we decided not to go further with this method. The accuracy we
got from the K-NN classifier was reasonable impressive considering time and computation
constraints.

During our work on power profile classification, we could identify at least one limitation:
BBs with similar power profiles were the primary cause of misclassification. For example,
consecutive additions block could be mistaken for one multiplication. This paves the
way for future work where finer granularity in CFG can be exploited for more accurate
classification. Although we realized the possibility of using faster DTW classifiers such
as [26], instead of traditional DTW classifier, we intend to undertake it as future work.
There is a scope of improvement in classification time. It is essential to bear in mind that,
for the classification to work in continuous real-time traces we need to compare all the
traces in the database to find the optimal match which takes more time and computational
resources. We believe that further research and investigation in this problem would be
beneficial in the use of this technique in future research. Further research on efficient time-
series searching and pattern matching would be useful to reduce the resources required for
classification. Our work can also be extended to work in a more general anomaly detection
for real-time multitasking systems. With the prior knowledge of CFG and the power trace
of all the nodes/BB on the program, any external interfering program is likely to produce
a significantly different control flow path and power traces, hence assisting in anomaly
detection.

44

5.2 Conclusion

In this thesis, we presented a novel technique for run-time execution reconstruction in mul-
titasking systems; assessed the classification algorithms for power-trace time series data;
and implemented an online classification algorithm using bandwidth reduction technique.
The proposed technique can be extended to a broad range of microcontroller (MCU) plat-
forms. For the purpose of experiment, we chose the AVR ATMega2560, which is widely
used in cyber-physical systems these days. Our work can be extended to work in a more
general anomaly detection of a real-time multitasking system. With the prior knowledge
of CFG and the power trace of all the nodes/BB on the program, any external interfering
program is likely to produce a significantly different control flow path and power traces,
hence assisting in anomaly detection. To list out the major contributions of this thesis;

• We built upon the previous work on non-intrusive program tracing using side power
channel analysis, by demonstrating preemptive multitasking classification. We de-
ployed a 1-NN combined with DTW and static code analysis to classify the traces.

• We assessed eight widely used machine learning classification algorithm with power-
trace data and showed the comparison of time and computational resources for all
the algorithms.

We strongly believe that our work provides a good starting point for future research on
non-intrusive run-time tracing of an operating system.

45

References

[1] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[2] C. Moreno and S. Fischmeister, “Non-intrusive Runtime Monitoring Through Power
Consumption: A Signals and System Analysis Approach to Reconstruct the Trace,”
in International Conference on Runtime Verification, pp. 268–284, Springer, 2016.

[3] C. Moreno, S. Fischmeister, and M. A. Hasan, “Non-intrusive program tracing and
debugging of deployed embedded systems through side-channel analysis,” ACM SIG-
PLAN Not., vol. 48, no. 5, p. 77, 2013.

[4] C. Moreno, S. Kauffman, and S. Fischmeister, “Efficient Program Tracing and Mon-
itoring Through Power Consumption – With A Little Help From The Compiler,” in
Design, Automation, and Test in Europe (DATE), 2016.

[5] Liu, Yannan and Wei, Lingxiao and Zhou, Zhe and Zhang, Kehuan and Xu, Wenyuan
and Xu, Qiang, “On Code Execution Tracking via Power Side-Channel,” in ACM
Conference on Computer and Communications Security, pp. 1019–1031, ACM, 2016.

[6] T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a Side Channel Based Disas-
sembler,” in Transactions on Computational Science X, pp. 78–99, Springer Berlin
Heidelberg, 2010.

[7] M. Msgna, K. Markantonakis, and K. Mayes, “The B-side of Side Channel Leakage:
Control Flow Security in Embedded Systems,” in International Conference on Security
and Privacy in Communication Systems, pp. 288–304, Springer, 2013.

46

[8] S. S. Clark, B. Ransford, A. Rahmati, S. Guineau, J. Sorber, K. Fu, and W. Xu,
“WattsUpDoc: Power Side Channels to Nonintrusively Discover Untargeted Malware
on Embedded Medical Devices,” in USENIX Workshop on Health Information Tech-
nologies, USENIX, 2013.

[9] D. Arora, S. Ravi, A. Raghunathan, and N. K. Jha, “Secure Embedded Processing
through Hardware-Assisted Run-Time Monitoring,” no. 1, pp. 178–183, 2005.

[10] K. Deng, A. W. Moore, and M. C. Nechyba, “Learning to recognize time series: com-
bining ARMA models with memory-based learning,” in Computational Intelligence
in Robotics and Automation, 1997. CIRA’97., Proceedings., 1997 IEEE International
Symposium on, pp. 246–251, Jul 1997.

[11] B. Bakshi and G. Stephanopoulos, “Representation of process trendsiv. induction of
real-time patterns from operating data for diagnosis and supervisory control,” Com-
puters & Chemical Engineering, vol. 18, no. 4, pp. 303–332, 1994.

[12] C. Antunes and A. L. Oliveira, “Temporal data mining: An overview,” in KDD Work-
shop on Temporal Data Mining, pp. 1–13, 2001.

[13] S. Zhong and J. Ghosh, “Hmms and coupled hmms for multi-channel eeg classifica-
tion,” in Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 International
Joint Conference on, vol. 2, pp. 1154–1159, IEEE, 2002.

[14] A. Nanopoulos, R. Alcock, and Y. Manolopoulos, “Information processing and tech-
nology,” ch. Feature-based Classification of Time-series Data, pp. 49–61, Commack,
NY, USA: Nova Science Publishers, Inc., 2001.

[15] R. J. Povinelli, M. T. Johnson, A. C. Lindgren, and J. Ye, “Time series classification
using gaussian mixture models of reconstructed phase spaces,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, pp. 779–783, June 2004.

[16] M. W. Kadous, “Learning comprehensible descriptions of multivariate time series.,”
in ICML, pp. 454–463, 1999.

[17] M. W. Kadous and C. Sammut, “Classification of multivariate time series and struc-
tured data using constructive induction,” Machine Learning, vol. 58, pp. 179–216, Feb
2005.

[18] R. Bellman and R. Kalaba, “On Adaptive Control Processes,” IRE Transactions on
Automatic Control, vol. 4, no. 2, pp. 1–9, 1959.

47

[19] W. Euachongprasit and C. A. Ratanamahatana, Efficient Multimedia Time Series
Data Retrieval Under Uniform Scaling and Normalisation, pp. 506–513. Springer
Berlin Heidelberg, 2008.

[20] T. Kahveci, A. Singh, and A. Gurel, “Similarity searching for multi-attribute se-
quences,” in Proceedings 14th International Conference on Scientific and Statistical
Database Management, pp. 175–184, 2002.

[21] T. Kahveci and A. Singh, “Variable length queries for time series data,” in Proceedings
17th International Conference on Data Engineering, pp. 273–282, 2001.

[22] J. Gu and X. Jin, A Simple Approximation for Dynamic Time Warping Search in
Large Time Series Database, pp. 841–848. Springer Berlin Heidelberg, 2006.

[23] C. Ratanamahatana and E. J. Keogh, “Making Time-Series Classification More Ac-
curate Using Learned Constraints,” in SDM, 2004.

[24] Y. Cui, S. Ahmad, and J. Hawkins, “Continuous online sequence learning with an
unsupervised neural network model,” Neural Comput., vol. 28, pp. 2474–2504, Nov.
2016.

[25] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana, “Fast Time Series
Classification Using Numerosity Reduction,” in Proceedings of the 23rd International
Conference on Machine Learning, ICML ’06, pp. 1033–1040, ACM, 2006.

[26] F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen, and E. Keogh,
“Faster and more accurate classification of time series by exploiting a novel dynamic
time warping averaging algorithm,” Knowl. Inf. Syst., vol. 47, pp. 1–26, Apr. 2016.

[27] B. D. Fulcher, M. A. Little, and N. S. Jones, “Highly comparative time-series analysis:
the empirical structure of time series and their methods,” Journal of The Royal Society
Interface, vol. 10, no. 83, 2013.

[28] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh, “Querying and
mining of time series data: Experimental comparison of representations and distance
measures,” Proc. VLDB Endow., vol. 1, no. 2, pp. 1542–1552, 2008.

[29] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classification,” SIGKDD
Explor. Newsl., vol. 12, no. 1, pp. 40–48, 2010.

48

[30] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Za-
karia, and E. Keogh, “Searching and mining trillions of time series subsequences under
dynamic time warping,” in Proceedings of the 18th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’12, (New York, NY, USA),
pp. 262–270, ACM, 2012.

[31] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances,” Data Min. Knowl. Discov., pp. 1–55, nov 2016.

[32] Aleph One, “Smashing the stack for fun and profit,” Phrack magazine, 1996.

[33] Solar Designer, ““return-to-libc” Attack,” Bugtraq, Aug 1997.

[34] Mouser Electronics, “Choosing the optimal low power mcu,” 2016. http://ca.

mouser.com/applications/low_power_choosing_mcu.

[35] Texas Instruments, “CMOS Power Consumption and Cpd Calculation,” 1997.

[36] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Advances in Cryptology
– CRYPTO’ 99, pp. 388–397, 1999.

[37] F. E. Allen, F. E., Allen, and F. E., “Control flow analysis,” in Proc. a Symp. Compil.
Optim. -, vol. 5, (New York, New York, USA), pp. 1–19, ACM Press, 1970.

[38] T. Popp, S. Mangard, and E. Oswald, “Power Analysis Attacks and Countermea-
sures,” IEEE Design Test of Computers, vol. 24, no. 6, pp. 535–543, 2007.

[39] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-flow bending:
On the effectiveness of control-flow integrity.,” in USENIX Security, vol. 14, pp. 28–38,
2015.

[40] S. Cesare and Y. Xiang, “Classification of malware using structured control flow,” in
Proceedings of the Eighth Australasian Symposium on Parallel and Distributed Com-
puting - Volume 107, AusPDC ’10, pp. 61–70, Australian Computer Society, Inc.,
2010.

[41] G. Gracioli and S. Fischmeister, “Tracing Interrupts in Embedded Software,” in Proc.
of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pp. 137–146, June 2009.

49

http://ca.mouser.com/applications/low_power_choosing_mcu
http://ca.mouser.com/applications/low_power_choosing_mcu

[42] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time series,
with implications for streaming algorithms,” in Proceedings of the 8th ACM SIGMOD
workshop on Research issues in data mining and knowledge discovery, pp. 2–11, ACM,
2003.

[43] K. P. Murphy, Machine learning: a probabilistic perspective. 2012.

[44] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae,
P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt,
and G. Varoquaux, “API design for machine learning software: experiences from the
scikit-learn project,” in ECML PKDD Workshop: Languages for Data Mining and
Machine Learning, pp. 108–122, 2013.

[45] A. L. Samuel, “Some studies in machine learning using the game of checkers,” IBM
Journal of Research and Development, vol. 3, pp. 210–229, July 1959.

[46] P. Domingos, “A few useful things to know about machine learning,” Commun. ACM,
vol. 55, pp. 78–87, Oct. 2012.

[47] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inf.
Theor., vol. 13, pp. 21–27, Sept. 2006.

[48] S. B. Kotsiantis, “Supervised machine learning: A review of classification techniques,”
in Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications
in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI,
Information Retrieval and Pervasive Technologies, (Amsterdam, The Netherlands,
The Netherlands), pp. 3–24, IOS Press, 2007.

[49] M. Bayes and M. Price, “An essay towards solving a problem in the doctrine of
chances. by the late rev. mr. bayes, f. r. s. communicated by mr. price, in a letter to
john canton, a. m. f. r. s.,” Philosophical Transactions, vol. 53, pp. 370–418, 1763.

[50] S. Raschka, “Naive bayes and text classification I - introduction and theory,” CoRR,
vol. abs/1410.5329, 2014.

[51] O. Chapelle, “Training a support vector machine in the primal,” Neural Computation,
vol. 19, pp. 1155–1178, 2007.

[52] A. Shashua, “Introduction to machine learning: Class notes 67577,” CoRR,
vol. abs/0904.3664, 2009.

50

[53] N. Ayat, M. Cheriet, and C. Suen, “Automatic model selection for the optimization
of svm kernels,” Pattern Recognition, vol. 38, no. 10, pp. 1733 – 1745, 2005.

[54] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and re-
gression trees,” 1999.

[55] S. L. Salzberg, “C4.5: Programs for machine learning by j. ross quinlan. morgan
kaufmann publishers, inc., 1993,” Machine Learning, vol. 16, pp. 235–240, Sep 1994.

[56] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning.
Springer Series in Statistics, New York, NY, USA: Springer New York Inc., 2001.

[57] T. Hastie, The elements of statistical learning : data mining, inference, and prediction
: with 200 full-color illustrations. New York: Springer, 2001.

[58] T. K. Ho, “The random subspace method for constructing decision forests,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 832–844,
Aug 1998.

[59] J. Brownlee, “Bagging and random forest ensemble algorithms for machine learning,”
2016-04-22.

[60] A. Zell, Simulation neuronaler Netze. Bonn Paris Reading, Mass. u.a: Addison-Wesley,
1994.

[61] D. J. Hand, P. Smyth, and H. Mannila, Principles of Data Mining. Cambridge, MA,
USA: MIT Press, 2001.

[62] F.-X. Dormoy, “SCADE 6: A Model Based Solution for Safety Critical Software De-
velopment,” in European Congress on Embedded Real Time Software, 2008.

[63] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown,
“MiBench: A Free, Commercially Representative Embedded Benchmark Suite,” Proc.
Workload Charact. 2001. WWC-4. 2001 IEEE Int. Work., pp. 3–14, 2001.

[64] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation,” in Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO ’04,
(Washington, DC, USA), pp. 75–, IEEE Computer Society, 2004.

[65] Saleae, “Python Library to Control a Saleae Logic Analyzer,” 2016 –. [Online; accessed
¡today¿].

51

[66] F. Petitjean, G. Forestier, G. I. Webb, A. E. Nicholson, Y. Chen, and E. Keogh, “Faster
and More Accurate Classification of Time Series by Exploiting a Novel Dynamic Time
Warping Averaging Algorithm,” Knowl. Inf. Syst., vol. 47, no. 1, pp. 1–26, 2016.

[67] J. Lin, R. Khade, and Y. Li, “Rotation-invariant similarity in time series using bag-
of-patterns representation,” 2012.

[68] K. Lamichhane, C. Moreno, and S. Fischmeister, “Non-intrusive program tracing of
non-preemptive multitasking systems using power consumption,” in Proc. of Design,
Automation, and Test (DATE), (Dresden, Germany), 2018.

[69] Y. Liu, L. Wei, Z. Zhou, K. Zhang, W. Xu, and Q. Xu, “On code execution tracking
via power side-channel,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, (New York, NY, USA), pp. 1019–
1031, ACM, 2016.

[70] P. Schäfer and U. Leser, “Fast and accurate time series classification with weasel,”
CoRR, vol. abs/1701.07681, 2017.

[71] V. Banciu, E. Oswald, and C. Whitnall, “Reliable Information Extraction for Single
Trace Attacks,”

[72] N. Kavvadias, P. Neofotistos, S. Nikolaidis, C. Kosmatopoulos, and T. Laopoulos,
“Measurements Analysis of the Software-Related Power Consumption in Micropro-
cessors,” IEEE Trans. Instrum. Meas., vol. 53, pp. 1106–1112, aug 2004.

[73] T. Giorgino, “Computing and visualizing dynamic time warping alignments in r: The
dtw package,” Journal of Statistical Software, vol. 31, no. 1, pp. 1–24, 2009.

[74] A. Silberschatz, P. B. Galvin, and G. Gagne, Applied Operating System Concepts.
New York, NY, USA: John Wiley & Sons, Inc., 2000.

[75] S. Sun, Z. Yan, and J. Zambreno, “Experiments in Attacking FPGA-Based Embedded
Systems using Differential Power Analysis,”

[76] Institute of Electrical and Electronics Engineers., IEEE Circuits and Systems Society.,
IEEE Computer Society., and IEEE Solid-State Circuits Council., IEEE transactions
on very large scale integration (VLSI) systems. Institute of Electrical and Electronics
Engineers, 1993.

[77] T. Popp, S. Mangard, and E. Oswald, “Power Analysis Attacks and Countermea-
sures,” IEEE Des. Test Comput., vol. 24, pp. 535–543, nov 2007.

52

[78] B. Miller, F. Vahid, and T. Givargis, “RIOS: A Lightweight Task Scheduler for Em-
bedded Systems,”

[79] S. Salvador and P. Chan, “Toward accurate dynamic time warping in linear time and
space,” Intell. Data Anal., vol. 11, pp. 561–580, Oct. 2007.

53

APPENDICES

54

Appendix A

Code Instrumentation

A.1 Instrumentation: Print Version

1 Cru i s eCon t r o l l e r f un c t i on ()
2 {
3

4 bool v a r i a b l e s d e f i n i t i o n ;
5

6 /∗more v a r i a b l e s f o r c r u i s e c on t r o l ∗/
7

8 p r i n t f (”CruiseControlNode0x13b5fe0 \n”) ;
9

10 /∗Check the pedal p o s i t i o n ∗/
11

12 Detec t I fPeda l I sPre s s ed ;
13 va r i a b l e 1 = FindSpeedLimit (SpeedInput) ;
14

15

16 Manag e t h e c r u i s e s t a t e p o l l i n g c o n t r o l v a r i a b l e s
17 Che c k i f b r a k e i s p r e s s e d ;
18 Ch e c k i f a c c e l e r a t o r i s p r e s s e d ;
19 Check a l l t h e o the r pa ramet e r s ;
20

21 /∗Update a l l the c on t r o l v a r i ab l e ∗/
22

23 Upda t e th e c r u i s e s t a t e ;
24

25 Update the s ta te () ;
26

55

27 Regu l t i o n Ch e c k I f i t i s o n o f f s a t n dby
28 I fL imit I sReached {
29

30 p r i n t f (”CruiseControlNode0x13b6100\n”) ;
31

32 UpdateSpeed management ;
33 }
34 e l s e i f (J u s t I n i t a l i z a t i o n) {
35

36 p r i n t f (”CruiseControlNode0x13b6160\n”) ;
37

38 Update speed to = ZeroSpeed ;
39 }
40

41 p r i n t f (”CruiseControlNode0x13b6280\n”) ;
42

43 ControlTheThrottleOfTheCruiseControlSystem ;
44 Update speed and state management ;
45

46

47 p r i n t f (” y i e l d \n”) ;
48 }

Listing A.1: Instrumentation: Print Version

A.2 Instrumentation: FLIP PORT Version

1 Cru i s eCon t r o l l e r f un c t i on ()
2 {
3

4 bool v a r i a b l e s d e f i n i t i o n ;
5

6 /∗more v a r i a b l e s f o r c r u i s e c on t r o l ∗/
7

8 FLIP PORT BIT ;
9

10 /∗Check the pedal p o s i t i o n ∗/
11

12 Detec t I fPeda l I sPre s s ed ;
13 va r i a b l e 1 = FindSpeedLimit (SpeedInput) ;
14

15

16 Manag e t h e c r u i s e s t a t e p o l l i n g c o n t r o l v a r i a b l e s
17 Che c k i f b r a k e i s p r e s s e d ;
18 Ch e c k i f a c c e l e r a t o r i s p r e s s e d ;

56

19 Check a l l t h e o the r pa ramet e r s ;
20

21 /∗Update a l l the c on t r o l v a r i ab l e ∗/
22

23 Upda t e th e c r u i s e s t a t e ;
24

25 Update the s ta te () ;
26

27 Regu l t i o n Ch e c k I f i t i s o n o f f s a t n dby
28 I fL imit I sReached {
29

30 FLIP PORT BIT ;
31

32 UpdateSpeed management ;
33 }
34 e l s e i f (J u s t I n i t a l i z a t i o n) {
35

36 FLIP PORT BIT ;
37

38 Update speed to = ZeroSpeed ;
39 }
40

41 FLIP PORT BIT ;
42

43 ControlTheThrottleOfTheCruiseControlSystem ;
44 Update speed and state management ;
45

46 FLIP PORT BIT ;
47 y i e l d () ;
48 }

Listing A.2: Instrumentation: FLIP PORT BIT Version

1 i f (min b lock l ength < 2)
2 {
3 c e r r << ”WARNING −−− Consider Min block l ength >= 2” << endl ;
4 }
5

6 s t r i n g l i n e ;
7 vector<s t r i ng> s r c c ode (1 , ” ”) ;
8 whi le (g e t l i n e (s r c f i l e , l i n e))
9 {

10 s r c c ode . push back (l i n e) ;
11 }
12 os t r ing s t r eam cmd ;
13 cmd << ” c lang −c −g −emit−l lvm −o ” << arg [1] << ” . o ” << arg [1] ;

57

14

15 i f (system (cmd . s t r () . c s t r ()) == −1)
16 {
17 c e r r << ”Error execut ing ” << cmd . s t r () << ” to ex t r a c t the CFG” <<

endl ;
18 re turn 1 ;
19 }
20

21 cmd . s t r (””) ;
22 cmd << ”opt −dot−cfg−only ” << arg [1] << ” . o 2>&1” ;
23

24 FILE ∗ cfg cmd = popen (cmd . s t r () . c s t r () , ” r ”) ;
25 char buf [1 0 2 4] ;
26 vector<s t r i ng> d o t f i l e s ;
27 whi le (f g e t s (buf , s i z e o f (buf) , cfg cmd) != NULL)
28 {
29 const s t r i n g l i n e (buf) ;
30 i f (l i n e . f i nd (” . dot ’ ”) != s t r i n g : : npos)
31 {
32 i s t r i n g s t r e am in (l i n e) ;
33 s t r i n g d i scard , d o t f i l e ;
34 g e t l i n e (in , d i scard , ’ \ ’ ’) ;
35 g e t l i n e (in , d o t f i l e , ’ \ ’ ’) ;
36 d o t f i l e s . push back (d o t f i l e) ;
37 }
38 }
39

40

41 ofstream ins t rumented por tb i t ((s t r i n g (arg [1]) + ” . i n s t r f p b . c”) . c s t r ()
) ;

42 ofstream in s t rument ed p r i n t f ((s t r i n g (arg [1]) + ” . i n s t r p r i n t . c”) . c s t r
()) ;

43

44 i f ((! i n s t rumented por tb i t) | | (! i n s t rument ed p r i n t f))
45 {
46 c e r r << ”Could not wr i t e to output f i l e ” << endl ;
47 re turn 1 ;
48 }
49

50 vector<s t r i ng> s r c i n s t r f p b (s r c c ode) ,
51 s r c i n s t r p r i n t (s r c c ode) ;
52

53 // F i r s t instrumented l i n e (w i l l need to p lace an #inc lude be f o r e
t h i s one)

54 i n t f i r s t l i n e = s r c code . s i z e () − 1 ;

58

55

56

57 Contro l f l ow graph g e t c f g (const s t r i n g & d o t f i l e , const vector<s t r i ng
> & sr c code) ;

58

59 f o r (vector<s t r i ng > : : c o n s t i t e r a t o r f = d o t f i l e s . begin () ; f !=
d o t f i l e s . end () ; ++f)

60 {
61 Contro l f l ow graph c f g = g e t c f g (∗ f , s r c c ode) ;
62 c f g . c o l l a p s e s h o r t n od e s (min b lock l ength) ;
63

64 f o r (Contro l f l ow graph : : c o n s t n od e i t e r a t o r node = c fg . nodes beg in
() ; node != c f g . nodes end () ; ++node)

65 {
66 i f (node−>l i n e () > 0 && node−>l i n e () < f i r s t l i n e)
67 {
68 f i r s t l i n e = node−>l i n e () ;
69 }
70

71 i f (node−>l ength () > 1)
72 {
73 s r c i n s t r f p b [node−>l i n e ()] = ”FLIP PORT BIT ; ” +

s r c i n s t r f p b [node−>l i n e ()] ;
74 s r c i n s t r p r i n t [node−>l i n e ()] = ” p r i n t f (\” ” + p r e f i x + node

−>id () + ”\\n\”) ; ” + s r c i n s t r p r i n t [node−>l i n e ()] ;
75 }
76 }
77

78 ofstream out dot (((∗ f) + ” . i n s t r . dot”) . c s t r ()) ;
79 i f (out dot)
80 {
81 c f g . wr i t e do t (out dot) ;
82 }
83 }
84

85 cout << ”SEARCHING fo r empty l i n e from l i n e ” << f i r s t l i n e << ”
backwards” << endl ;

Listing A.3: Intrumentation of source code

59

	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Related Work
	Problem Statement and Assumptions
	Contributions
	Organization of the Thesis

	Background
	System Model Concepts
	Power Trace Analysis
	Basic Block (BB)
	Control Flow Graph (CFG)
	Multitasking Systems – Interrupts and Context Switching
	Time Series Classification

	Machine Learning Algorithms for Time Series Classification
	Types of machine learning
	Lg-Nearest Neighbors
	Naive Bayes Classifier
	Support Vector Machine
	Decision Tree
	Random Forest
	Neural Network
	Quadratic Discriminant Analysis (QDA)
	Lg-Nearest Neighbors and Dynamic Time Warping (DTW) Algorithms

	System Model
	Powertraces Capture Setup
	Source Code Instrumentation
	Capturing Power Traces and Preprocessing

	Classification Techniques in Power Trace
	Experimental Setup
	Tools Used
	Benchmark Programs
	Experiment
	Evaluation Metrics

	Feature-based Classification
	Results –Feature-based Classification
	Discussion –Feature-based Classification

	Shape-based Classification
	Results –Shape-based Classification

	Shape-based Method(DTW) vs. Feature-based Method

	Discussion, Future Work and Conclusions
	Discussion and Future Work
	Conclusion

	References
	APPENDICES
	Instrumentation
	Instrumentation: Print Version
	Instrumentation: FLIP_PORT Version

