45 research outputs found

    The k-mismatch problem revisited

    Get PDF
    We revisit the complexity of one of the most basic problems in pattern matching. In the k-mismatch problem we must compute the Hamming distance between a pattern of length m and every m-length substring of a text of length n, as long as that Hamming distance is at most k. Where the Hamming distance is greater than k at some alignment of the pattern and text, we simply output "No". We study this problem in both the standard offline setting and also as a streaming problem. In the streaming k-mismatch problem the text arrives one symbol at a time and we must give an output before processing any future symbols. Our main results are as follows: 1) Our first result is a deterministic O(nk2logk/m+npolylogm)O(n k^2\log{k} / m+n \text{polylog} m) time offline algorithm for k-mismatch on a text of length n. This is a factor of k improvement over the fastest previous result of this form from SODA 2000 by Amihood Amir et al. 2) We then give a randomised and online algorithm which runs in the same time complexity but requires only O(k2polylogm)O(k^2\text{polylog} {m}) space in total. 3) Next we give a randomised (1+ϵ)(1+\epsilon)-approximation algorithm for the streaming k-mismatch problem which uses O(k2polylogm/ϵ2)O(k^2\text{polylog} m / \epsilon^2) space and runs in O(polylogm/ϵ2)O(\text{polylog} m / \epsilon^2) worst-case time per arriving symbol. 4) Finally we combine our new results to derive a randomised O(k2polylogm)O(k^2\text{polylog} {m}) space algorithm for the streaming k-mismatch problem which runs in O(klogk+polylogm)O(\sqrt{k}\log{k} + \text{polylog} {m}) worst-case time per arriving symbol. This improves the best previous space complexity for streaming k-mismatch from FOCS 2009 by Benny Porat and Ely Porat by a factor of k. We also improve the time complexity of this previous result by an even greater factor to match the fastest known offline algorithm (up to logarithmic factors)

    Approximating Approximate Pattern Matching

    Full text link
    Given a text TT of length nn and a pattern PP of length mm, the approximate pattern matching problem asks for computation of a particular \emph{distance} function between PP and every mm-substring of TT. We consider a (1±ε)(1\pm\varepsilon) multiplicative approximation variant of this problem, for p\ell_p distance function. In this paper, we describe two (1+ε)(1+\varepsilon)-approximate algorithms with a runtime of O~(nε)\widetilde{O}(\frac{n}{\varepsilon}) for all (constant) non-negative values of pp. For constant p1p \ge 1 we show a deterministic (1+ε)(1+\varepsilon)-approximation algorithm. Previously, such run time was known only for the case of 1\ell_1 distance, by Gawrychowski and Uzna\'nski [ICALP 2018] and only with a randomized algorithm. For constant 0p10 \le p \le 1 we show a randomized algorithm for the p\ell_p, thereby providing a smooth tradeoff between algorithms of Kopelowitz and Porat [FOCS~2015, SOSA~2018] for Hamming distance (case of p=0p=0) and of Gawrychowski and Uzna\'nski for 1\ell_1 distance

    Pattern Matching in Multiple Streams

    Full text link
    We investigate the problem of deterministic pattern matching in multiple streams. In this model, one symbol arrives at a time and is associated with one of s streaming texts. The task at each time step is to report if there is a new match between a fixed pattern of length m and a newly updated stream. As is usual in the streaming context, the goal is to use as little space as possible while still reporting matches quickly. We give almost matching upper and lower space bounds for three distinct pattern matching problems. For exact matching we show that the problem can be solved in constant time per arriving symbol and O(m+s) words of space. For the k-mismatch and k-difference problems we give O(k) time solutions that require O(m+ks) words of space. In all three cases we also give space lower bounds which show our methods are optimal up to a single logarithmic factor. Finally we set out a number of open problems related to this new model for pattern matching.Comment: 13 pages, 1 figur

    Longest Common Extensions in Sublinear Space

    Get PDF
    The longest common extension problem (LCE problem) is to construct a data structure for an input string TT of length nn that supports LCE(i,j)(i,j) queries. Such a query returns the length of the longest common prefix of the suffixes starting at positions ii and jj in TT. This classic problem has a well-known solution that uses O(n)O(n) space and O(1)O(1) query time. In this paper we show that for any trade-off parameter 1τn1 \leq \tau \leq n, the problem can be solved in O(nτ)O(\frac{n}{\tau}) space and O(τ)O(\tau) query time. This significantly improves the previously best known time-space trade-offs, and almost matches the best known time-space product lower bound.Comment: An extended abstract of this paper has been accepted to CPM 201

    Checking whether a word is Hamming-isometric in linear time

    Full text link
    A finite word ff is Hamming-isometric if for any two word uu and vv of same length avoiding ff, uu can be transformed into vv by changing one by one all the letters on which uu differs from vv, in such a way that all of the new words obtained in this process also avoid~ff. Words which are not Hamming-isometric have been characterized as words having a border with two mismatches. We derive from this characterization a linear-time algorithm to check whether a word is Hamming-isometric. It is based on pattern matching algorithms with kk mismatches. Lee-isometric words over a four-letter alphabet have been characterized as words having a border with two Lee-errors. We derive from this characterization a linear-time algorithm to check whether a word over an alphabet of size four is Lee-isometric.Comment: A second algorithm for checking whether a word is Hamming-isometric is added using the result given in reference [5
    corecore