
 Clifford, R., Fontaine, A., Porat, E., Sach, B., & Starikovskaia, T. (2016).
The k-mismatch problem revisited. In Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 2039-2052).
Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9781611974331.ch142

Peer reviewed version

Link to published version (if available):
10.1137/1.9781611974331.ch142

Link to publication record in Explore Bristol Research
PDF-document

© 2015 SIAM

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/33131555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1137/1.9781611974331.ch142
https://doi.org/10.1137/1.9781611974331.ch142
https://research-information.bris.ac.uk/en/publications/the-kmismatch-problem-revisited(a4ce41a4-51e5-4883-bdc4-79b2b0545217).html
https://research-information.bris.ac.uk/en/publications/the-kmismatch-problem-revisited(a4ce41a4-51e5-4883-bdc4-79b2b0545217).html

The k-mismatch problem revisited

Raphaël Clifford1, Allyx Fontaine1, Ely Porat2,
Benjamin Sach1, and Tatiana Starikovskaya1

1University of Bristol, Department of Computer Science, Bristol, U.K.
2Bar-Ilan University, Department of Computer Science, Israel

Abstract
We revisit the complexity of one of the most basic prob-
lems in pattern matching. In the k-mismatch problem we
must compute the Hamming distance between a pattern of
length m and every m-length substring of a text of length
n, as long as that Hamming distance is at most k. Where
the Hamming distance is greater than k at some alignment
of the pattern and text, we simply output “No”.

We study this problem in both the standard offline
setting and also as a streaming problem. In the streaming
k-mismatch problem the text arrives one symbol at a time
and we must give an output before processing any future
symbols. Our main results are as follows:

• Our first result is a deterministic O(nk2 log k/m +
n polylogm) time offline algorithm for k-mismatch
on a text of length n. This is a factor of k improve-
ment over the fastest previous result of this form
from SODA 2000 [9, 10].

• We then give a randomised and online algorithm
which runs in the same time complexity but requires
only O(k2 polylogm) space in total.

• Next we give a randomised (1 + ε)-approximation
algorithm for the streaming k-mismatch problem
which uses O(k2 polylogm/ε2) space and runs in
O(polylogm/ε2) worst-case time per arriving sym-
bol.

• Finally we combine our new results to derive a
randomised O(k2 polylogm) space algorithm for
the streaming k-mismatch problem which runs in
O(
√
k log k+ polylogm) worst-case time per arriv-

ing symbol. This improves the best previous space
complexity for streaming k-mismatch from FOCS
2009 [26] by a factor of k. We also improve the time
complexity of this previous result by an even greater
factor to match the fastest known offline algorithm
(up to logarithmic factors).

1 Introduction
We study the complexity of one of the most basic prob-
lems in pattern matching. In the k-mismatch problem we
are given as input two strings, a pattern of length m and a
text of length n. The task is to output the Hamming dis-
tance between the pattern and everym-length substring of
the text where the Hamming distance is at most k. If the
Hamming distance is greater than k we need only output
“No”. We provide new, faster and more space efficient
solutions for the k-mismatch problem in both the classic
offline setting and when considered as an online streaming
problem.

The general task of efficiently computing the
Hamming distances between a pattern and a longer
text has been studied since at least the 1980s when
O(n
√
m logm) time solutions were first discovered [1,

23]. For many years however the fastest known algorithm
for the k-mismatch problem ran in O(nk) time [24] using
repeated Lowest Common Ancestor calls to a generalised
suffix tree of the pattern and text. Eventually, in the year
2000 two improved algorithms were given which run in
O(nk3 log k/m+n log k) andO(n

√
k log k) time respec-

tively [9, 10]. The former algorithm is clearly preferable
when k/m is relatively small and the latter algorithm has
superior performance in all other cases. Until this point,
these two algorithms remain the fastest solutions known.

Our first result is a new deterministic algorithm for
the k-mismatch problem which is faster than or compa-
rable to all previous solutions (up to log factors) when
k ∈ O(m2/3). This is a result of independent interest,
providing the fastest known k-mismatch algorithm for a
large and particularly natural range of values of the thresh-
old k.

THEOREM 1.1. Given a pattern P of length m and a
text T of length n, there is a deterministic solution for
the k-mismatch problem with run-time O(nk2 log k/m+
n polylogm).

We then turn our attention to a small-space online
version of the k-mismatch problem. In this setting the

text arrives one symbol at a time and we must output the
Hamming distance, if it is at most k, before the subsequent
symbol arrives. We consider a particularly strong space
model where we account for all the space used by our
algorithm and in particular we are not permitted to store
a copy of the pattern or text without also accounting for
that. We obtain the following result.

THEOREM 1.2. Given a pattern P of length m and a
streaming text of total length n arriving one symbol at a
time, there is a randomisedO(k2 polylogm) space online
algorithm which runs in O(nk2 log k/m + n polylogm)
time and solves the k-mismatch problem. The probability
of error is at most 1/m2.

A particularly attractive feature of this new online
algorithm is that whenever k ∈ O(m1/2−ε), it not only
uses sublinear space but also has total running time of
only O(n polylogm) time.

We next consider a small-space approximate version
of the k-mismatch problem. In return for tolerating a
constant multiplicative error in the output we are able to
give an algorithm that runs in polylogm time per symbol.
We define the (1 + ε)-approximate k-mismatch problem
as follows. Let y be the true Hamming distance at a
particular alignment of the pattern and text. At each
alignment of the pattern and text, we output either an
integer x or “No”. If we output “No” then y > k
with high probability. If we output an integer x then
y ≤ x ≤ (1 + ε)y with high probability. One subtlety
with this problem definition is that the two cases overlap
when k < y ≤ (1 + ε)k. In this case we are free to either
output “No” or an integer x. However any integer we do
output must still be an (1 + ε)-approximation to the true
Hamming distance. This formulation is a generalisation
of the ε-threshold decision problem introduced by Indyk
in FOCS 1998 [19] where a linear space O((n/ε3) logm)
time offline algorithm was given.

THEOREM 1.3. Given a pattern P of length m and a
streaming text arriving one symbol at a time, there is a
randomised O(k2 polylogm/ε2) space algorithm which
takesO(polylogm/ε2) worst-case time per arriving sym-
bol and solves the (1 + ε)-approximate k-mismatch prob-
lem. The probability of error is at most 1/m2.

Finally we turn to the streaming k-mismatch problem
itself. Here the text arrives one symbol at a time, as
in the online model. However a particularly important
additional feature is that the performance per arriving
symbol should be guaranteed worst-case.

The analysis of small space streaming algorithms for
pattern matching problems started in earnest in FOCS
2009 [26]. In that year Porat and Porat presented a
randomised algorithm for performing exact matching in

a stream which only stored O(logm) words of space
and required O(logm) worse-case time per arriving sym-
bol [26]. This result was subsequently slightly simpli-
fied [17] and then eventually improved to take constant
time per arriving symbol in 2011 [11].

Following this early breakthrough, the natural ques-
tion was to ask for what other pattern matching problems
is it also possible to find near optimal time and space so-
lutions. Unfortunately, it turns out that for a large range
of the most popular pattern matching problems, includ-
ing pattern matching with wildcards, L1, L2, L∞-distance
and edit distance, space proportional to the pattern length
is required for any randomised online algorithm [13]. De-
spite this, the Porat and Porat paper also presented an al-
gorithm for the streaming k-mismatch problem that ran
in O(k3 polylogm) space and O(k2 polylogm) time per
arriving symbol in their original 2009 paper. For small k
this is a sublinear space algorithm and it remains to date
one of the few fast sublinear space algorithms for stream-
ing pattern matching that is known.

As our final result we use a combination of Theo-
rems 1.2 and 1.3 as the basis for a new worst-case time
streaming algorithm for the k-mismatch problem which is
not only significantly faster than the result of Porat and
Porat, but whose time complexity matches (up to loga-
rithmic factors) the fastest known offline algorithm. Our
method also uses a multiplicative factor of k less space
than the previous result of Porat and Porat (up to logarith-
mic factors again) while still guaranteeing that an output
is made after each arriving symbol and before any future
symbol is processed.

THEOREM 1.4. Given a pattern of length m and a
streaming text arriving one symbol at a time, there is
a randomised O(k2 polylogm) space algorithm which
takes O(

√
k log k + polylogm) worst-case time per ar-

riving symbol and solves the k-mismatch problem. The
probability of error is at most 1/m2.

Each one of our four main results is of independent
interest and advances the state of the art for their respec-
tive problems. However, we regard Theorems 1.1 and 1.4
to be the most significant contributions of this paper. The
main technical contributions are set out in Section 3.

2 Related work and lower bounds
There has been great interest in time and space efficient
streaming algorithms over the last 20 years, following
the seminal work of [2]. In relation specifically to pat-
tern matching problems, where space is not limited but
where an output must be computed after every new sym-
bol of the text arrives, the Hamming distance between the
pattern and the latest suffix of the stream can be com-
puted online in O(

√
m logm) worst-case time per ar-

riving symbol or O(
√
k log k + logm) time for the k-

mismatch version [16]. Both these methods however re-
quire Θ(m) space. Using the same approach, a number of
other approximate pattern matching algorithms have also
been transformed into efficient linear space online algo-
rithms including [5, 4, 3, 8, 7, 6, 25]. The only other
small space streaming pattern matching algorithm that we
are aware of solves a problem known as parameterised
matching [20]. In the offline setting, randomised and de-
terministic algorithms that give an (1 + ε)-approximation
to the Hamming distance are also known [21]. The run-
ning time of these two algorithms is O((n/ε2) log2m)
and O((n/ε2) log3m) respectively. Using an existing on-
line to offline reduction [14] the (1+ε)-approximation al-
gorithms of [21] can be converted into Θ(m/ε2) space on-
line solutions with guaranteed worst case running time per
arriving symbol at a multiplicative time cost of O(logm).

One can derive a space lower bound for any streaming
problem by looking at a related one-way communication
complexity problem. The randomised one-way commu-
nication complexity of determining if the Hamming dis-
tance between two n bits strings is greater than k is known
to be Ω(k) bits (with an upper bound of O(k log k) [18].
From this we can derive the same lower bound for the
space required by any streaming k-mismatch algorithm.
The results we present in this paper take us a significant
step towards this lower bound but it is still unclear how
closely it can ultimately be reached.

3 Overview of the main ideas
In this section we will give an overview of the main ideas
needed to prove Theorems 1.1, 1.2, 1.3 and 1.4.

We start by introducing the notion of the approximate
period, or x-period of a string. This idea will be crucial
for all of our main results. We will in general use the ap-
proximate period of the pattern to separate our problems
into two cases. Let HAM(P, S) be the Hamming distance
between length m strings P and S and let HAM(P, T)[i]
be HAM(P, T [i−m+ 1, i]).

DEFINITION 1. The x-period of a string P of length m
is the smallest integer π > 0 such that HAM(P [π,m −
1], P [0,m− 1− π]) ≤ x. (For example, the 1-period of a
string babaa is 2.)

Let ` be the 3k-period of the pattern P and as our first
of two cases, consider when ` ≤ k. We call this the small
approximate period case and as we will see, the solution
for this case contains some of the main ideas on which our
other results will rely.

FACT 3.1. If the 3k-period of the pattern is ` then each
(3k/2)-mismatch of the pattern and the text must be at
least ` symbols apart.

Proof. If T [i − m + 1, i] and T [i − m + `′, i + `′]
are (3k/2)-mismatch occurrences of the pattern, then

HAM(P [`′,m− 1], P [0,m− 1− `′]) ≤ HAM(P, T)[i] +
HAM(P, T)[i + `′] ≤ 3k. From the definition of the
(3k/2)-period it follows that `′ ≥ `.

Small approximate period (` ≤ k) case of The-
orems 1.1 and 1.2. Our solution for the small approx-
imate period case is the same for both our offline (see
Theorem 1.1) and online small-space (see Theorem 1.2)
algorithms. The main new idea is to reduce the problem
to many instances of run length encoded pattern match-
ing. Our solution utilises a simple variant of run length
encoding and we will use this encoding to reduce the k-
mismatch problem to a total of O(k2) small instances of
the run length encoded Hamming distance problem.

There are a number of surprising elements to our
solution. The first one is that in any substring of the
text of length 2m we can find a compressible region
that contains all the alignments of the pattern and text
with Hamming distance at most k. The second is that
by choosing a suitable partitioning of the pattern and of
this compressible region into O(k) subpatterns and O(k)
subtexts respectively and then run length encoding those,
we can ensure that the total number of runs, summed
across all subpatterns and subtexts is only O(k). The
third is that despite there being O(k) subpatterns and
O(k) subtexts giving O(k2) instances of the run length
encoded Hamming distance problem, each of which can
take O(k2 log k) time, we show that the time complexity
of all the instances sums to only O(k2 log k). By the
same approach, we will demonstrate that the working
space of all the instances sums to O(k2). We will also
need to be careful when recovering the final Hamming
distances because, in the worst case, each final distance is
the sum of k outputs of the run length encoded Hamming
distance problem. A naive summation would therefore
result in an additive Ω(k) term per Hamming distance. To
overcome this bottleneck we will take advantage of the
compressed output to reduce the time taken to recover the
final distances to O(m + k2 log k) per text substring of
length 2m.

Using a standard trick we run our algorithm inde-
pendently on O(n/m) substrings of the text of length
2m, each overlapping the next by m symbols, thus giv-
ing Lemma 3.1. The main steps for the offline setting are
set out in Algorithm 1. The online algorithm is based on
the same ideas, but requires running the five steps of the
offline algorithm in parallel. We give a full description of
the online algorithm in Section 6.

LEMMA 3.1. Consider a pattern P of length m, and
a text T of length n arriving online. If the 3k-period
of P is smaller than k, then the k-mismatch pattern
matching problem can be solved in O(k2) space and
O(nk2 log k/m+ n) time.

Input: Pattern of lengthm and text of length 2m.

1. Identify a compressible region of the text
which contains all the k-mismatches.

2. Partition this region into O(k) subtexts and
the pattern into O(k) subpatterns.

3. Run length encode all the subpatterns and
subtexts.

4. Compute run length encoded Hamming dis-
tances for each subpattern/subtext pair.

5. Sum the Hamming distances from Step 4.

Algorithm 1: Deterministic offline algorithm for k-mismatch
when the pattern has small approximate period.

Large approximate period (` > k) case of Theo-
rems 1.1 and 1.2. The overall structure of our solutions
for both Theorems 1.1 and 1.2 when the pattern has large
approximate period is the same. We first describe the sim-
pler deterministic case which gives us Theorem 1.1.

1. Filter out all alignments of the pattern and text with
Hamming distance greater than 3k/2. We can do
this by running Karloff’s (1 + ε)-approximation al-
gorithm [21] with ε = 1/2, excluding all posi-
tions which are reported to have Hamming distance
greater than 3k/2. This takes O(log3m) time per
symbol in the text.

2. Verify whether the Hamming distance is at most k at
those positions. This takes O(k) time per alignment
we need to verify using O(k) repeated application of
constant time longest common prefix (LCP) queries
between the pattern and the suffix of the text starting
at the current alignment [24].

We need only run the verification step at alignments
that have not been filtered out by the filtering step. By
Fact 3.1 there can be no more than one such alignment
for every k consecutive text symbols that arrive. It fol-
lows that the total amortised time for the large approxi-
mate period case is O(npolylogm). This completes the
algorithmic description that establishes Theorem 1.1.

In order to establish Theorem 1.2 for the large ap-
proximate period case we will need small-space versions
of both the filtering and verification steps. For the filtering
step we set ε = 1/2 again and this time use Theorem 1.3,
which we discuss later. In the same way as in the deter-
ministic case, after filtering the verification step will only
need to verify at most one potential k-mismatch per k con-
secutive text symbols. To do this efficiently we maintain
a dynamic data structure that allows us to query the Ham-
ming distance between P and the latestm-length suffix of

the text and will output the exact distance if it is at most k
and “No” otherwise. Each time a new symbol of the text
arrives we perform an update.

LEMMA 3.2. For a given pattern P of length m, and
an online text T of length n there is a data structure
which answers Hamming distance queries as described
above and uses O(k2 polylogm) space, update time
O(polylogm), and query time O(k polylogm). If the
Hamming distance does not exceed 2k, the probability of
error is at most 1/m2.

The key technical innovation, which is set out in
Lemma 3.2 is that our data structure takes only polylogm
time to perform an update when a new text symbol arrives
if no query is performed at that time. We will use this
asymmetry in query and update times combined with
Fact 3.1 to show Theorem 1.4.

Our solution for Lemma 3.2 works by first reducing
the problem to repeated application of 1-mismatch, in
a similar fashion to Porat and Porat [26] and then in
turn reducing the 1-mismatch problem to the streaming
dictionary matching problem. However, our method
differs significantly in technique from the previous work
both by randomising the first reduction step and then in
our second reduction step which allows us to perform
updates much more quickly than queries.

(1 + ε)-approximate k-mismatch - Theorem 1.3.
The main new ideas for our approximation algorithm are
a novel randomised length reduction scheme and a two
stage approximation scheme. The general idea is as fol-
lows. First, during preprocessing we reduce the length of
the pattern to be only O(k log2m). We then overcome a
particularly significant technical hurdle by showing how
to transform the text in such a way that any Hamming
distance between the reduced length pattern and the trans-
formed text provides a reasonable approximation of the
corresponding Hamming distance in the original input.
Finally we apply an existing linear space online (1 + ε)-
approximation algorithm to the reduced length pattern and
the transformed text to give the final approximate answer.
The entire process is repeated independently in parallel a
logarithmic number of times to improve the error prob-
ability. We argue that this approximation of an approxi-
mation still gives us a (1 + ε)-approximation to the true
Hamming distance at each alignment with good probabil-
ity.

Deamortisation using the tail trick - Theorem 1.4.
We can now describe how to deamortise our online k-
mismatch algorithm withO(nk2 log k/m+n polylogm)
run-time that we gave for Theorem 1.2 to give us a
fast worst-case time streaming algorithm satisfying Theo-
rem 1.4. We first observe that if the pattern length m is at
most 2k2, we can run an existing algorithm [16] which
will take O(

√
k log k) time per symbol and uses linear

space, which in this case isO(k2). We now proceed under
the assumption that m > 2k2.

To deamortise the algorithm, we use a two part par-
titioning that we call the tail trick. Similar ideas were
also used to deamortise streaming pattern matching al-
gorithms in [15, 16]. We partition the pattern into two
parts: the tail, Pt — the suffix of P of length 2k2, and the
head, Ph — the prefix of P length (m − 2k2) . We will
compute the current Hamming distance, HAM(P, T)[i]
by summing HAM(Pt, T)[i] and HAM(Ph, T)[i − 2k2].
To compute HAM(Pt, T)[i] we again use the existing lin-
ear space online k-mismatch algorithm from [16] taking
O(
√
k log k) time per symbol and O(k2) space.
We also need to make sure that when the i-th sym-

bol of the text, T [i], arrives, we will have computed
HAM(Ph, T)[i − 2k2] in time. To this end we run the
amortised algorithm from Theorem 1.2 using pattern Ph.
However, we cap the run-time at O(polylogm) per sym-
bol. That is, when T [i] arrives we run polylogm steps of
the algorithm. Because the algorithm is amortised, it may
lag behind the text stream — when T [i] arrives, it may
still be processing T [i′] for some i′ < i. Fortunately, the
lag cannot exceed 2k2, that is at all times i − i′ ≤ 2k2.
This is because we are able to show that while processing
any k2 consecutive text symbols the total time complexity
of the algorithm, summed over those consecutive symbols
is upper bounded by O(k2 log k) = O(k2 polylogm). To
allow for the lag in the deamortisation process we also
maintain a buffer containing the most recently arrived 2k2

text symbols and the most recent 2k2 outputs.
The space is dominated by the algorithm from The-

orem 1.2 which uses O(k2 polylogm) space. The time
complexity is the sum of the complexities for processing
Pt and Ph which isO(

√
k log k+polylogm) per arriving

symbol.

4 Proof of Lemma 3.2 - A data structure for
k-mismatch queries

In this section we give the proof of Lemma 3.2 which
explains how we can maintain a small k-mismatch data
structure that can be updated very quickly when a text
symbol arrives but only computes an output at an align-
ment where a k-mismatch query is performed. The
updates take O(polylogm) time and the queries take
O(k polylogm) time.

The pattern and text partitioning. The dynamic
data structure we present here uses a simple, cyclic par-
titioning of the pattern and streaming text. The same par-
titioning will also be used in Sections 5 and 6. For an
integer q we can partition the pattern P as follows: For
each r ∈ [0, q − 1], the subpattern P q,r = P [r]P [q +
r]P [2q + r] . . . P [b(m− r − 1)/qc · q + r]. That is P q,r

contains exactly the positions of P that have remainder r
modulo q. The text stream can be partitioned into r sub-

streams analogously, i.e. T q,r = T [r]T [q+r]T [2q+r] . . .
for each r ∈ [0, q − 1].

When T [i] arrives in the text stream we refer to
the alignment of P and T [i − m + 1, i] as the current
alignment. There is also a natural notion of the current
alignment of subpattern P q,r with exactly one substream
T q,r

′
for some r′ ∈ [0, q−1]. Consider the positions in P

which correspond to positions in P q,r. These positions in
P are aligned with |P q,r| positions in T [i−m+1, i] which
in turn all occur in some unique T q,r

′
. In fact they exactly

form the latest |P q,r| length suffix of the substream T q,r
′
.

We will refer to this alignment as the current alignment of
P q,r without explicitly referencing T q,r

′
.

A randomised reduction to 1-mismatch queries.
We can assume that m ≥ 34k

δ log2m. Otherwise, we
can use O(m) space and still satisfy the conditions for
Lemma 3.2. In this case we maintain a data structure,
as described in [16] which allows us to perform Longest
Common Prefix calls between the pattern and the latest
m-length suffix of the streaming text, each taking constant
time. We can see that at most (k + 1) Longest Common
Prefix calls are needed to answer a k-mismatch query and
the update time per arriving symbol is O(logm).

We begin by giving a reduction to the 1-mismatch
problem. The reduction and the algorithm from Section 5
will use the following technical lemma. We assume
here and throughout that all logarithms are base 2 unless
otherwise explicitly stated.

LEMMA 4.1. If p1, p2 are two distinct integers in [1,m]
and q is a random prime number in the interval
[kδ log2m, 34kδ log2m] where 1

6k < δ ≤ 1, then Pr[p1 =

p2 mod q] ≤ δ
32k .

Proof. We have 34k
δ log2m > 17. Applying Corollary

1 from [27] we obtain that the number of primes in the
interval [kδ log2m, 34kδ log2m] is at least

(34−2)·k
δ log2m

log (34k
δ log2m)

≥
32k
δ log2m

logm
≥ 32k

δ
logm

If p1 = p2 mod q, then q is a prime divisor of
|p1−p2|. Observe that |p1−p2| ≤ m−1 has at most logm
distinct prime divisors. Consequently, the probability that
q is one of these divisors is at most logm

(32k/δ) logm = δ
32k .

We set δ to 1 and pick logm primes independently
and uniformly at random from [kδ log2m, 34kδ log2m].
These are denoted q1, q2, . . . , qlogm. Each qj gives a
partitioning of P into qj subpatterns P qj ,r, and T into qj
substreams T qj ,r, as described above.

At the current alignment, that is the alignment of
P and T [i − m + 1, i], we say that a position in P
where a mismatch occurs is isolated under qj if the

current alignment of some subpattern P qj ,r containing
that position has exactly one mismatch. We define Ii to be
the number of positions in P that are isolated mismatches
between P and T [i − m + 1, i] under at least one qj .
In Lemma 4.2 below we demonstrate that if the latest
Hamming distance is small then it equals Ii with high
probability.

LEMMA 4.2. If HAM(P, T)[i] ≤ 2k, then
HAM(P, T)[i] = Ii with probability at least 1− 1

m2 .

Proof. HAM(P, T)[i] = Ii if and only if each mismatch
is isolated under qj for at least one j. Let M =
{x1, x2, . . . , x|M|} be the set of mismatches in the current
alignment of P and T . Suppose that a mismatch xi is
not isolated under qj . It follows that xi = xi′ mod qj
for some i′ 6= i. By Lemma 4.1, the probability of
this event is at most 1/32k. Applying the union bound,
we obtain that xi that is not isolated under qj with
probability at most 1/16. Therefore, as the primes are
picked independently, a mismatch xi is not isolated under
qj for all j with probability at most (1/16)logm = 1/m4.
Applying the union bound, we finally obtain that the
probability of HAM(P, T)[i] 6= Ii is at most 2k/m4 ≤
1/m2.

We will answer a k-mismatch query at alignment i
by computing Ii. To allow us to compute Ii, we will
maintain a number of data structures that can answer 1-
mismatch queries on the subpatterns. Given a pair (qj , r),
a 1-mismatch query determines whether at the current
alignment of P qj ,r there is exactly one mismatch and if
so, returns its location. By Lemma 4.3 below, we can
answer a 1-mismatch query in O(polylogm) time.

LEMMA 4.3. Given a pair (qj , r), a 1-mismatch query
on the current alignment of P qj ,r can be answered in
O(polylogm) time. The required data structures use
O(k2 polylogm) total space and maintaining them takes
O(polylogm) time when a stream update occurs.

We defer discussion of our method for answering
1-mismatch queries until after we explain how we use
them to compute Ii: First, we perform O(k polylogm)
1-mismatch queries to find the set containing every (qj , r)
such that subpattern P qj ,r has exactly one mismatch.
Second, we look through every (qj , r) in the set and
use the position of the mismatch in P qj ,r to determine
the corresponding mismatching position in P . This set
of mismatching positions is very likely to contain many
duplicates because each position in P occurs in exactly
one P qj ,r for each qj . Therefore, the third step is to
remove any duplicates to recover Ii. Finally we return
Ii as the answer to the k-mismatch query, unless Ii > k,
in which case we return “No”.

The total space is O(k2 polylogm) and the update
time is O(polylogm) both of which are dominated by the
space and maintenance time of the data structures required
to support 1-mismatch queries. The time complexity for
a k-mismatch query is therefore O(k polylogm) and is
dominated by the time taken to perform O(k polylogm)
1-mismatch queries, each taking O(polylogm) time.

Proof of Lemma 4.3. We conclude this section by
explaining our method for answering 1-mismatch queries
which is based on a reduction to streaming dictionary
matching. Given a set of patterns D, called a dictionary,
the streaming dictionary matching problem is to find
any occurrences of patterns in the dictionary in a text
stream as they occur. We will use a recent streaming
dictionary matching algorithm [15] which is randomised
and usesO(|D| logm) space and takesO(log logm) time
to process a stream update — i.e. arrival of a new symbol
of T .

The dictionary that we build is based on a second
level of partitioning of the subpatterns using the same par-
titioning scheme but with smaller values of q. For each
(first-level) subpattern P qj ,r there is a set of O(log2m)
second-level subpatterns which we denote byPqj ,r2 . From
Theorem 1 in [27] it follows that there are at least
logm/ log logm primes in an interval [logm, 3 logm]
and consequently the product of all primes in this inter-
val is at least (logm)α = m. For each prime number
p ∈ [logm, 3 logm] and s ∈ [0, p − 1] there is a second-
level subpattern P q

′,r′ ∈ Pqj ,r2 where q′ = (qj · p) and
r′ = (qj ·s)+r. We define the dictionaryD =

⋃
qj ,r
Pqj ,r2

containing all O(k polylogm) second-level subpatterns.
Each substream T qj ,r is partitioned into second-level

substreams in an analogous manner. We run the streaming
dictionary matching algorithm [15] with dictionary D on
each second-level substream. Maintaining these stream-
ing dictionary matching algorithms takes O(polylogm)
time each time an update occurs. This is because each
arriving T [i] only occurs in O(logm) second-level sub-
streams. For each substream we use O(k polylogm)
space. As there are O(k polylogm) substreams this is
O(k2 polylogm) space in total.

Let us now show that a subpattern P qj ,r contains
an isolated mismatch if and only if for each prime there
exists exactly one second-level subpattern that does not
match. Indeed, if P qj ,r contains an isolated mismatch
then the second half of the statement obviously holds.
Assume now that for each prime there exists exactly one
second-level subpattern that does not match and that there
are at least two mismatches at positions 1 ≤ x < y ≤
|P qj ,r| < m in the current alignment of P qj ,r. For all
j the remainders of x, y modulo qj are defined by the
index of the second-level subpattern they belong to (i.e.
the unique subpattern that does not match) and therefore
are equal. As the product of the primes qj is at least m,

by the Chinese Remainder Theorem we have x = y, a
contradiction.

Therefore, to answer a 1-mismatch query on P qj ,r

it suffices to determine which of the second-level subpat-
terns in Pqj ,r2 do not match, or, equivalently, match ex-
actly at the latest alignment. With the help of the dictio-
nary pattern matching algorithm we can find all second-
level subpatterns P qi,r that do not match inO(polylogm)
time. If for each prime there is exactly one second-level
subpattern that does not match, we can find the position of
the mismatch in P qi,r in O(polylogm) time as explained
above.

5 Proof of Theorem 1.3 - A small space (1 +
ε)-approximation

In this section we give our (1 + ε)-approximation for the
streaming k-mismatch problem. If ε < 1/(2k), we can
just run the (1 + 1/(2k))-approximate algorithm. This
only improves the time and space, but does not change the
output as the (1+1/(2k))-approximate algorithm exactly
solves the k-mismatch problem and therefore by the def-
inition gives a (1 + ε)-approximation. Below we assume
ε ≥ 1/(2k). We will also assume that m ≥ 34k

δ log2m,
otherwise O(m/ε2) space will satisfy the conditions for
Theorem 1.3 and we can simply apply the online version
of Karloff’s (1 + ε)-approximate algorithm [14].

Our algorithm, AApprox, will use the same partitioning
of P and T into subpatterns P q,r and substreams T q,r

as in Section 4. As before we will perform this parti-
tioning for O(logm) values of q. However in contrast
to Section 4 the range from which the primes are chosen
will also depend on ε. Specifically, q1, q2, . . . , qlogm are
picked independently and uniformly at random from the
primes in the range [kδ log2m, 34kδ log2m] where we set
δ = ε

3 . The subpatterns and substreams for qj then are
given by P qj ,r and T qj ,r for each r ∈ [0, qj − 1].

In Section 4 we saw that for an arbitrary text sub-
string T [i−m+ 1, i] we can find the Hamming distance
between T [i −m + 1, i] and P (if it is small) by finding
every subpattern P qj ,r that has exactly one mismatch. We
will now see that to approximate the Hamming distance it
suffices to count the number of subpatterns P qj ,r that do
not match exactly. For some alignment i, let µi,j denote
the number of subpatterns P qj ,r that do not match exactly
and let µi = maxj µi,j . Lemma 5.1 tells us that if the
Hamming distance is small then µi is a good approxima-
tion of the true Hamming distance. As intuition for the
proof techniques, first observe that µi,j is always upper-
bounded by the true Hamming distance. The value of µi,j
underestimates the Hamming distance whenever two mis-
matches in P belong to the same subpattern P qj ,r. For-
tunately when the Hamming distance is relatively small,
it is likely that for at least one prime qj , the effect of
these collisions will be small. Lemma 5.2 shows that if

HAM(P, T)[i] is big, then µi is big with high probabil-
ity. We will consider δ to be an arbitrary value between
1/(6k) and 1/3.

LEMMA 5.1. If HAM(P, T)[i] ≤ 2k, then for all (1 −
δ) ·HAM(P, T)[i] ≤ µi ≤ HAM(P, T)[i] with probability
at least 1− 1

4m2 .

Proof. By definition, µi ≤ HAM(P, T)[i] with proba-
bility 1. Recall that µi = maxµi,j , where µi,j is the
number of subpatterns P qj ,r that do not match. The
number of such subpatterns is at least the number Ii,j
of mismatches isolated under qj . Consequently, Ii,j ≤
(1 − δ) · HAM(P, T)[i] for all j. It implies that the
number Īij of mismatches that are not isolated under
qj is at least δ · HAM(P, T)[i]. On the other hand,
E[Īij] ≤ δ

16 ·HAM(P, T)[i] by Lemma 4.1. By Markov’s
inequality, the probability of Īij ≥ δ · HAM(P, T)[i] is
at most 1/16. As it holds for all j, the probability of
µi ≤ (1−δ)·HAM(P, T)[i] is at most (1/16)logm < 1

4m2 .

We now show that the Hamming distance is big, then
µi is big with high probability.

LEMMA 5.2. If HAM(P, T)[i] > 2k then µi > (1+δ)·k
with probability at least 1− 1

4m2 .

Proof. Suppose that HAM(P, T)[i] > 2k and choose a
subset M of any 2k mismatches between P and T [i −
m + 1, i]. Remember that µi is the maximum number
of subpatterns that do not match in a partition for the
current alignment. We say that a mismatch x is M-
isolated under qj if it is the only mismatch fromM that
occurs in the current alignment of some subpattern P qj ,r.
If µi ≤ (1 + δ) · k ≤ 5

4k, then for all j there are at most
5
4k subpatterns that do not match, and consequently there
are at most 5

4k mismatches that areM-isolated under qj .
Assume that each mismatch x ∈ M is M-isolated

for more than 5
8 logm of the chosen primes. By summing

over all mismatches in M, we have that
∑
j µi,j >

5
4k logm, a contradiction. Consequently, there is at least
one mismatch x ∈ M that is notM-isolated for at least
3
8 logm of the primes.

By Lemma 4.1 and the union bound the probability
that a mismatch x is not M-isolated under qj is at
most δ/16. So, the probability of HAM(P, T)[i] > 2k

is at most (δ/16)
3
8 logm ≤ 1

4m2 .

As alluded to in Section 3, algorithm AApprox performs
two main phases. The first phase creates a set of 2 logm
length-reduced versions of the pattern during preprocess-
ing and then performs a series of transformations on the
text as it arrives. There are two reduced patterns and two
transformed texts for each of the O(logm) values of qj .
The second phase then approximates the Hamming dis-
tance between each of the reduced length patterns and the

transformed texts. We will see that when combined these
Hamming distances are a good approximation of µi which
is in turn a good approximation of the true Hamming dis-
tance.

First phase. During the first phase, for each qj we
perform a length reduction on P by constructing two new
patterns, φqj1 and φqj2 , each of lengthO(kδ log2m). To this
end, we first compute an identifier1, denoted φ(P qj ,r), for
each subpattern P qj ,r such that φ(P qj ,r) has O(logm)

bits and with high probability φ(P qj ,r) = φ(P qj′ ,r
′
) if

and only if P qj ,r = P qj′ ,r
′
. For each qj , either all

the subpatterns have the same length or there exists an
sj such that the subpatterns P qj ,0, . . . , P qj ,qj−sj−1 have
equal lengths and the subpatterns P qj ,qj−sj , . . . , P qj ,qj−1

which have length exactly one less. If the subpatterns do
have two different lengths, the two new patterns for prime
qj are then given by φqj1 = φ(P qj ,0) . . . φ(P qj ,qj−sj−1)
and φ

qj
2 = φ(P qj ,qj−sj) . . . φ(P qj ,qj−1). We will pro-

ceed assuming that not all the subpatterns have the same
length as if they do we can simply omit the parts of the
algorithm that would otherwise use the second pattern.

We transform the text as it arrives to form two new
streams, Cqj1 and Cqj2 for each qj . To produce these new
streams, for each substream T qj ,r we run two instances of
a dictionary matching algorithm [15], one on dictionary
D1 = {P qj ,0, . . . , P qj ,qj−sj−1} and one on D2 =
{P qj ,qj−sj , . . . , P qj ,qj−1}. For the latest alignment in
the substream T qj ,r, each dictionary matching instance
returns the identifier of a subpattern from its dictionary
(D1 or D2) that currently matches (if there is one)2. Both
instances use O(qj logm) space and O(log logm) time
per position and are correct with high probability.

We use the output of the dictionary matching to form
the streams, Cqj1 and C

qj
2 , for each qj . When a new

symbol in T arrives, we will append one symbol to Cqj1
and one to C

qj
2 . The arrival of a new symbol in T

corresponds to a new symbol in one substream T qj ,r for
each qj . If we find a new match of a pattern from D1

in T qj ,r we append its identifier to Cqj1 . Otherwise, we
append $ to Cqj1 . Analogously for D2, we find a match
of a pattern from D2, we append its identifier to Cqj2 , and
otherwise we append $. This allows us to compute µi,j at
alignment i as formalised by the following fact.

FACT 5.1. For any alignment i and qj , we have that
µi,j = HAM(φ

qj
1 , C

qj
1)[i− sj] + HAM(φ

qj
2 , C

qj
2)[i].

Proof. By definition, HAM(φ
qj
1 , C

qj
1)[i − sj] equals

the number of subpatterns from P qj ,0, . . . , P qj ,qj−sj−1

that do not match at the current alignment, while

1For example, Karp-Rabin fingerprints [22] meet these requirements.
2The streaming dictionary matching algorithm from [15] can easily

be modified to return such an identifier.

HAM(φ
qj
2 , C

qj
2)[i] equals the number of subpatterns

among P qj ,qj−sj , . . . , P qj ,qj−1 that do not match.

Second phase. The second phase approximates the
values of HAM(φ

qj
1 , C

qj
1)[i − sj] and HAM(φ

qj
2 , C

qj
2)[i]

for each qj as the stream arrives. We compute these
approximate Hamming distances using an online vari-
ant [14] of Karloff’s (1+δ)-approximate pattern matching
algorithm [21]. Karloff’s algorithm requires δ to be bigger
than the reciprocal of the pattern’s length. This condition
is satisfied as

δ ≥ 1

6k
≥ 1

3k log2m
≥ 1

k
δ log2m

≥ max

(
1

|φqj1 |
,

1

|φqj2 |

)
The algorithm takes O(kδ3 log4m) space and

O(log4m
δ2) time per output. We run two instances of the

algorithm for each qj , one on the stream C
qj
1 and the pat-

tern φqj1 , and other on stream C
qj
2 and pattern φqj2 . For

the first algorithm, we store the last sj ≤ qj outputs
in a cyclic buffer. We can then compute µ̃i,j , the sum
of the approximate values of HAM(φ

qj
1 , C

qj
1)[i − sj] and

HAM(φ
qj
2 , C

qj
2)[i] in O(1) time per output.

The maximum of the µ̃i,j outputs over all j is an
integer µ̃i ∈ [µi, (1 + δ) · µi], which can be computed in
O(logm) time per position. The algorithm returns “No”
if µ̃i > (1 + δ) · k and µ̃i/(1− δ) otherwise. The claim
of correctness is given in Lemma 5.3.

LEMMA 5.3. For all 1
2k < ε ≤ 1

2 , if µ̃i > (1+ ε
3)·k, then

HAM(P, T)[i] > k; otherwise, µ̃i/(1− ε
3) is a (1 + ε)-

approximation of HAM(P, T)[i]. The error probability is
at most 1

m2 .

Proof. We use Karp-Rabin fingerprints [22] as identifiers
of the subpatterns. The probability that identifiers of two
equal-length subpatterns are equal can be made as small
as 1/n3 by choosing a sufficiently large prime. It implies
that the probability of computing µ̃i incorrectly is at most
(34k/δ) log2m

n3 ≤ 1/(4m2). Assume that µ̃i is computed
correctly. If µ̃i > (1 + δ) · k, then HAM(P, T)[i] ≥ µi ≥
µ̃i/(1 + δ) > k. Otherwise, µi ≤ µ̃i ≤ (1 + δ) · k, and
from Lemma 5.1 we obtain that HAM(P, T)[i] ≤ 2k with
probability at least 1−1/(4m2). Finally, Lemma 5.1 also
implies that HAM(P, T)[i] ≤ µi/(1−δ) ≤ µ̃i/(1−δ) and
µ̃i/(1−δ) ≤ 1+δ

1−δ ·µi ≤ (1+ε)·µi ≤ (1+ε)·HAM(P, T)[i]

with probability at least 1 − 1/(4m2). The output is
the integer bµ̃i/(1 − δ)c ≤ µ̃i/(1 − δ) ≤ (1 + ε) ·
HAM(P, T)[i]. As µi/(1 − δ) ≥ HAM(P, T)[i] and
HAM(P, T)[i] is an integer we have that bµ̃i/(1 − δ)c ≥
HAM(P, T)[i]. The claim follows.

Time and space complexities. It suffices to esti-
mate the overall time and space complexities for the case

where ε ≥ 1/(2k) as for the smaller values of ε we run
a (1 + 1/(2k))-approximate algorithm. For one prime
and one substream, the dictionary pattern matching al-
gorithm uses O

(
(k/δ) log3m

)
space as the dictionary

will contain O
(
(k/δ) log2m

)
subpatterns. In total, all

the dictionary pattern matching algorithms combined use
O
(
(k2/δ2) log6m

)
= O

(
(k2/ε2) log6m) space as we

have O(logm) primes for each of the O(
(
k/δ) log2m

)
substreams. We also require O

(
(k/ε3) log5m

)
space to

run all O(logm) copies of the online version of Karloff’s
(1 + δ)-approximation algorithm. This is because each
subpattern is of length O((k/ε) log2m) (recall that δ =
ε/3). Despite this the overall space complexity is not
affected by running Karloff’s algorithm. This is be-
cause if ε > 1/2k then the space is dominated by
O
(
(k2/ε2) log6m).

Each symbol of T is added to only one of the sub-
streams T qj ,r for each j. For each of them we up-
date the dictionary matching algorithms, which takes
O(logm log logm) time. Next, for each of the O(logm)
updated streams we give one output of the online ver-
sion of Karloff’s algorithm, which takes O(log5m/δ2) =
O(log5m/ε2) time in total. This completes the proof of
Theorem 1.3.

6 Proof of Lemma 3.1 - The small approximate
period case

We now prove Lemma 3.1 which states that if the 3k-
period of P is smaller than k, then the k-mismatch pat-
tern matching problem can be solved in O(k2) space and
O(nk2 log k/m + n) time. In Algorithm 1 we set up the
five tasks we need to achieve to solve this problem in the
offline setting: Identify a compressible region of the text
which contains all the k-mismatches, partition this region
into O(k) subtexts and the pattern into O(k) subpatterns,
run length encode all the subpatterns and subtexts, com-
pute run length encoded Hamming distances for each sub-
pattern/subtext pair, and finally sum the Hamming dis-
tances. In this section we give a small space online so-
lution for the problem. In the online setting we need to
achieve the same five tasks, but in parallel.

Before we analyse the online version of Algorithm 1
in more detail we first discuss some of its key elements.
We can find the compressible region online as the text
arrives by maintaining the length of the longest suffix of
T [0, i] that can be encoded in small space until symbol
T [m− 1] arrives. Similarly once the symbol T [m] arrives
we maintain the length of the longest prefix of T [m, i] that
can be encoded in small space. The compressible region
is simply the concatenation of this suffix-prefix pair.

Recall that we need to partition the compressible re-
gion intoO(k) subtexts and run length encode all the sub-
texts. We will be doing it online simultaneously with com-

puting the compressible region. Computing Hamming
distances for each subpattern/subtext pair requires us to
compute the Hamming distance online using run length
encoded inputs. To do this efficiently we will introduce
a new online run length encoded Hamming distance al-
gorithm which we call ARLE. As we will run ARLE on a
number of different subpatterns and subtexts formed by
partitioning the pattern and text we also require that its
output will be given in compressed form. Finally we will
use this compressed output to recover the Hamming dis-
tances for each alignment of the pattern and of the text.

Run length encoding using the 3k-period. We be-
gin by describing the variant of run length encoding that
we will use and argue that all the information about
the pattern and text that we need to answer k-mismatch
queries can be encoded in O(k) space. Let ` ≤ k be the
3k-period of P . We partition the pattern and the text as
described in Section 4 except that instead of choosing a
random prime, we use the fixed value ` instead. Recall
that for an arbitrary string S, the partition S`,r is defined
to be equal S[r]S[`+r]S[2`+r] . . . up until the end of S.
As ` is fixed for this section, we will shorten the notation
S`,r to Sr instead. The `-run length encoding of a string
S is defined as the ordered set of all Sr, each stored in run
length encoded form, where r ∈ [0, `− 1]. We denote by
runs(Sr) the number of runs in Sr. The size of the encod-
ing, denoted runs`(S) is

∑`−1
r=0 runs(Sr). We begin with

an example of the encoding. The whitespace in P in the
example has only been included for visual clarity.

EXAMPLE 1. Let P = aab aab aab aab aab aab aac and
k = 4. The 3k-period of P is ` = 3. We then have that,
P 0 = aaaaaaa, P 1 = aaaaaaa, P 2 = bbbbbbc. The
`-run length encoding of P is: the run length encoding
(a, 7) of P 0, the run length encoding (a, 7) of P 1, and
the run length encoding (b, 6)(c, 1) of P 2. The size of the
encoding , runs`(P) = 1 + 1 + 2 = 4.

Our first observation is that for a pattern with small
approximate period, its `-run length encoding is also
small. Intuitively this is because a pattern with small
approximate period almost repeats every ` symbols.

LEMMA 6.1. If P has 3k-period at most k then
runs`(P) ≤ 4k.

Proof. We have that HAM(P [`,m−1], P [0,m−1−`]) ≤
3k. Let h = HAM(P [`,m − 1], P [0,m − 1 − `]) and
let I = {i1, i2, . . . ih} be the set of locations of the
mismatches in P [0,m− 1− `]. For all i ∈ [`,m− 1] \ I
we have that P [i − `] = P [i]. Furthermore let Ir be the
subset of I containing indices {i ∈ I | i = r mod `}.
Observe that for r, r′ ∈ [0, ` − 1] with r 6= r′, we have
that Ir and Ir′ are disjoint. Recall that P [i−`] = P [i] for
all i ∈ [`,m−1]\I. If we rephrase this in terms of P r, we

have that P r[q− 1] = P r[q] if (q`+ r) ∈ [`,m− 1] \ Ir.
Since the number of runs in P r is equal to the number of
non-equal neighbouring symbols plus one, the number of
runs in P r is at most |Ir|+ 1. By summing over all r, we
have that runs`(P) ≤ 3k + ` ≤ 4k.

The second observation is that there is a substring
of T which we call T ? which compresses well and con-
tains every alignment with at most k mismatches with
the pattern. Intuitively this substring compresses well
because it is very similar to the pattern, which in turn
compresses well. Let us define TL to be the longest
suffix of T [0,m − 1] for which runs`(TL) ≤ 5k and
TR to be the longest prefix of T [m, 2m − 1] for which
runs`(TR) ≤ 5k. We define T ? = TLTR. It follows di-
rectly that runs`(T?) ≤ 10k.

LEMMA 6.2. T ? completely contains every T [i − m +
1, i] such that HAM(P, T)[i] ≤ k.

Proof. Let iL be the smallest integer such that
HAM(P, T)[iL +m− 1] ≤ k and let iR be the largest in-
teger such that HAM(P, T)[iR] ≤ k. Obviously, T [iL, iR]
completely contains every T [i − m + 1, i] such that
HAM(P, T)[i] ≤ k.

To show that T ? contains T [iL, iR] it suffices to show
that the run length encodings of T [iL,m−1] and T [m, iR]
have size at most 5k. To see that runs`(T [iL,m − 1]) ≤
5k, consider alignment iL +m− 1. As HAM(P, T)[iL +
m−1] ≤ k andm−1 ≤ iL+m−1, we have that P differs
from T [iL, iL +m− 1] in at most k positions. However,
we have just shown that runs`(P) ≤ 4k. Consider the
run length encoding of P r and the encoding of T r. If
there is a run in the encoding of T r which ends at some
T [iL + j] but there is no run ending at P [j], then this
must be the position of a mismatch. Therefore the number
of these additional runs is at most k. Furthermore, we
have that P [j] is such that j = r mod `. Therefore the
mismatch P [j] cannot cause an additional run in any T r

′

with r′ 6= r. We therefore have that by summing over all
r, the total number of runs, runs`(T [iL, iL + m − 1]) is
at most runs`(P) + k ≤ 5k. Finally we observe that the
encoding of a prefix is no larger than the encoding of the
original. That is, runs`(T [iL,m− 1]) ≤ runs`(T [iL, iL +
m− 1]) ≤ 5k. An analogous argument allows us to prove
that runs`(T [m, iR]) ≤ 5k.

Run length encoded Hamming distance. Before
we explain the full algorithm in more detail, we first intro-
duce the algorithm ARLE. The algorithm ARLE is a straight-
forward adaptation of the offline algorithm of Chen et
al. [12], which computes Hamming distances between run
length encoded text and pattern, to the streaming setting.

We briefly explain the overall approach of Chen et
al.’s algorithm [12]. Consider a text T ′ and a pattern P ′

both in the run length encoded form. Let D be an n ×m
matrix where D[i, j] equals one if P ′[j] 6= T ′[i] and
equals zero otherwise. The Hamming distance between
P ′ and T ′[i −m + 1, i] is exactly the sum of the entries
along the i-th diagonal of D. The i-th diagonal is the one
which intersects cells D[i − m + 1, 0] and D[i,m − 1].
The first observation that Chen et al. make is that the
matrix D can be composed into O(runs(P ′) · runs(T ′))
monochromatic rectangles. These rectangles are exactly
given by dividingD vertically whenever P ′[j] 6= P ′[j−1]
and horizontally whenever T ′[i] 6= T ′[i − 1]. For 1 ≤
i ≤ |P ′|, they define ∆[i] to be the difference between the
Hamming distance at alignments i and (i− 1). Formally,

∆[i] = HAM(P ′, T ′)[i]− HAM(P ′, T ′)[i− 1]

Further they observe that if the i-th diagonal does not
intersect any corners then ∆[i] = ∆[i − 1]. In an offline
setting, the values of ∆[i] such that ∆[i] 6= ∆[i − 1]
(and hence the values of HAM(P ′, T ′)[i]) can be found
by sorting these corners and processing them in the order
that they intersect the i-th diagonal as i increases.

We begin by briefly explaining how the input and out-
put have been adapted for our streaming setting. The
ARLE algorithm consists of two alternating operations,
NEWRUN(i, σ) and DIFF(i). The input to ARLE is sup-
plied via the NEWRUN(i, σ) operation which informs al-
gorithm ARLE that a new run starts at T ′[i] = σ. Each
NEWRUN(i, σ) operation triggers DIFF(i) operation.

Operation DIFF(i) produces an output of the algo-
rithm. DIFF(i) returns three values: a pair (∆[i], i∗),
where i ≤ i∗, and HAM(P ′, T ′)[i]. Next DIFF oper-
ation will be called at next NEWRUN operation or at
T [i∗], whichever comes first. It is guaranteed that if no
NEWRUN occurs during T ′[i, i∗] then ∆[i] = ∆[i+ 1] =
. . . = ∆[i∗ − 1].

We now explain how the operations NEWRUN and
DIFF are supported. We maintain a diagonal line which
moves from top to bottom as NEWRUN and DIFF op-
erations occur. When either NEWRUN(i, σ) or DIFF(i)
is performed, the diagonal line moves forward to the i-
th diagonal. Any corners of rectangles in D that are
crossed by the movement of the line are processed in or-
der. This is achieved using a priority queue containing
currently unprocessed corners (sorted by the order that the
corners intersect the i-th diagonal). As all points which
are to the left of or are currently on the i-th diagonal
have been processed by the end of DIFF(i), both ∆[i]
and HAM(P ′, T ′)[i] can be outputted by following the ap-
proach of Chen et al. Following the discussion above,
any NEWRUN operation corresponds to a new horizontal
line in D. This introduces O(runs(P ′)) rectangles and
hence O(runs(P ′)) new corners. These points are pushed
into the priority queue when NEWRUN operation occurs.

Finally for any DIFF(i) operation we also need to out-
put i∗, where i∗ ≥ i is the smallest integer such that there
is a corner currently in the priority queue which inter-
sects diagonal i∗. We can find this value with the help
of the priority queue. Observe that the number of dis-
tinct i∗ outputted by the algorithm over all DIFF(i) oper-
ations is upper-bounded by the number of corners which
is O(runs(P ′) · runs(T ′)). This property is required when
we use the algorithm to limit the number of DIFF(i) op-
erations required. We now summarise the space and time
complexities of the ARLE algorithm in Lemma 6.3.

LEMMA 6.3. Given a run length encoded pattern P ′

and text T ′, the algorithm ARLE solves the Hamming
distance problem in O(runs(P ′)) space. The amor-
tised time complexity of NEWRUN or DIFF operation is
O(runs(P ′) log(runs(P ′))) or O(log(runs(P ′))) respec-
tively. No preprocessing is needed.

Proof. The space complexity follows from Chen et
al. who observe that the size of the priority queue is
O(runs(P ′)) at any time. The whole of P ′ can be stored
in O(runs(P ′)) space. Only the latest symbol of T ′ is re-
quired.

Recall that the time complexities are amortised over
all NEWRUN and DIFF operations performed so far.
The number of points inserted into the priority queue
is O(runs(P ′)) per NEWRUN performed. A cost of
O(runs(P ′) log(runs(P ′))) is charged to the NEWRUN
which inserted them. This pays for processing them
during any subsequent NEWRUN or DIFF operations.
The amortised time complexity of NEWRUN operation
is therefore O(runs(P ′) log(runs(P ′))) because priority
queue operations take O(log(runs(P ′))) time. Similarly,
the amortised time complexity of the DIFF operation is
O(log(runs(P ′))).

The k-mismatch algorithm. We now give a more
detailed description of our online algorithm for the k-
mismatch problem in the small approximate period case.
Recall that in this section we assume that |T | = 2m.
The algorithm performs three phases, Setup, Handover
and Output depending on the value of i when T [i] arrives.
The symbol T [m− 1] is processed by all three phases (in
ascending order) and is the only symbol processed by the
Handover phase.

Setup phase: (i ≤ m− 1). We maintain a modified `-run
length encoding of the longest suffix TL of the current text
T [0, i] such that runs`(TL) ≤ 5k (see Lemma 6.4). More
formally, we maintain for each r ∈ [0, `− 1] a linked list
of tuples (j, T [j]), where j are the starting positions of
runs in T sL for s = i1 + r mod `. We also maintain the
length of each list and the total length of all lists.

Handover phase: (i = m − 1). We compute the `-
run length encoding of TL and then start `2 instances of
ARLE. For each (r, s) ∈ [0, ` − 1]2, the instance denoted
ARLE(r, s) uses pattern P r and text T s

′

L , where s′ + m −
|TL| = s mod `. A sequence of NEWRUN operations
are performed immediately on ARLE(r, s) to provide the
whole of the run length encoding of T s

′

L as text input. The
NEWRUN operations are offset to account for the start of
T s

′

L within T s. Specifically, for each T sL[i′] 6= T sL[i′ − 1]
we perform NEWRUN(i′ + b(m− s)/`c − |T sL|, T sL[i′]).

Output phase: (i ≥ m− 1). We perform four steps:

1. First, we check whether T [i] starts a new run in T s

where s = i mod `. If so for each r ∈ [0, ` −
1], we perform NEWRUN(bi/`c, T [i]) on instance
ARLE(r, s). Recall that every NEWRUN(bi/`c, T [i])
operation also triggers a DIFF(bi/`c) operation.

2. Second, for each r ∈ [0, ` − 1] we compute
∆r,s[bi/`c] - the value of ∆[bi/`c] for instance
ARLE(r, s) where s = i mod `. To this end we de-
termine the set of all r ∈ [0, ` − 1] such that i∗r,s =
bi/`c. Here i∗r,s is the i∗ value outputted by the last
DIFF operation performed on ARLE(r, s). For every
such ARLE(r, s) we perform DIFF(bi/`c) to compute
∆r,s[bi/`c] and then update i∗r,s. For all other (r, s),
we have that ∆r,s[bi/`c] = ∆r,s[bi/`c − 1].

3. Third, we check whether the total number of runs
processed by all ARLE instances exceeds 8k. If so, all
ARLE instances are abandoned and we output “No” for
this and every subsequent value of i in [m− 1, 2m−
1].

4. Finally, we compute the latest Hamming distance,
HAM(P, T)[i] from HAM(P, T)[i − `] and the out-
puts of the ARLE(r, s) using the equations from
Lemma 6.5 and Lemma 6.6 as described below.

All steps of the algorithm are self-explanatory, except
for the Setup phase and the fourth step of the Output
phase, which we describe in details below. We start by
giving a lemma that will allow us to compute TL (the
Setup phase).

LEMMA 6.4. Given the modified `-run length encoding
of S = T [i1, i2], the modified `-run length encoding of
either T [i1 + 1, i2] or T [i1, i2 + 1] can be computed in
O(1) time.

Proof. To compute the encoding of T [i1 + 1, i2], we
go to the (i1 mod `)-th list. The first two tuples in this
list define the length of the first run in S(i1 mod `). If it
equals one, we delete the first tuple and then decrement
the length of the list and the total length of the lists by

one. Otherwise, we simply replace the first tuple by
(i1 + `, T [i1 + `]).

To compute the encoding of T [i1, i2+1], we go to the
((i2 + 1) mod `)-th list. The last tuple in the list defines
whether T [i2 + 1] starts a new run in S((i2+1) mod `). If
it does, we add a new tuple (i2 + 1, T [i2 + 1]) to the list
and increment the list’s length and the total length by one.
Otherwise, we do nothing.

We now give two lemmas which combined will allow
us to efficiently compute the final Hamming distances
(the fourth step of the Output phase). Note that the
ARLE instances collectively process the substring T ? as
defined in Lemma 6.1. Let T ? = T [i′L, i

′
R]. (Recall that

T ? contains T [iL, iR] but does not necessarily equal it).
Remember that for any i 6∈ [i′L + m − 1, i′R], we have
that HAM(P, T)[i] > k. For the first ` alignments in
[i′L+m−1, i′R] we use Lemma 6.5 to calculate the output
directly from the ARLE outputs.

LEMMA 6.5. For any i ∈ [i′L +m− 1, i′R], we have that

HAM(P, T)[i] =

`−1∑
r=0

HAM(P r, TR(r,i))[Q(r, i)],

where R(r, i) = (r + i − m + 1) mod ` and Q(r, i) =⌊
r+i−m+1

`

⌋
+ |P r| − 1.

Proof. In the alignment of P and T [i−m+1, i] we have
that P r is aligned against T [i−m+ 1 + r]T [i−m+ 1 +
r + `] . . . T [i −m + 1 + r + ` · (|P r| − 1)]. The claim
follows.

For the remaining alignments we use Lemma 6.6.
We will compute HAM(P, T)[i] from HAM(P, T)[i − `]
and ∆`[i], where ∆`[i] =

∑`−1
r=0 ∆r,R(r,i)Q(r, i). The

value of ∆`[i] will in turn be computed from ∆`[i − `]
by updating only the terms which have changed. We will
argue below that these terms change very rarely.

LEMMA 6.6. For any i ∈ [i′L + ` + m − 1, i′R],
HAM(P, T)[i]− HAM(P, T)[i− `] = ∆`[i].

Proof. First consider Lemma 6.5 with i substituted for
i− `. We have that,

HAM(P, T)[i−`] =

`−1∑
r=0

HAM(P r, TR(r,i−`))[Q(r, i−`)]

It follows from the definitions of R and Q that
R(r, i− `) = R(r, i) and Q(r, i− `) = Q(r, i)− 1. This
therefore simplifies to

HAM(P, T)[i− `] =

`−1∑
r=0

HAM(P r, TR(r,i))[Q(r, i)− 1].

The claim follows immediately via subtraction and
substitution.

Space complexity. We now establish that the space
complexity of the k-mismatch pattern matching algorithm
is O(k2) as stated in Lemma 3.1. The space required to
store P in the `-run length encoded form as well as the
suffix TL is O(k) by definition. To compute the latest
Hamming distance we store the most recent ` Hamming
distances as well as the last two outputs from each DIFF
operation on each ARLE instance. Only these DIFF outputs
are required because Q(r, i) ∈ [bi/`c − 1, bi/`c] as we
show in Lemma 6.7.

LEMMA 6.7. Q(r, i) ∈ [bi/`c − 1, bi/`c].

Proof. Finally we demonstrate the observation that
Q(r, i) ∈ [bi/`c − 1, bi/`c]. Substituting in the length of
P r we have thatQ(r, i) equals

⌊
r+i−m+1

`

⌋
+(
⌊
m−r−1

`

⌋
+

1)− 1. Further,

⌊
i

`

⌋
− 1 ≤

⌊
r + i−m+ 1

`

⌋
+

⌊
m− r − 1

`

⌋
≤
⌊
i

`

⌋
As there are `2 different ARLE instances, this is O(k2)

space. Finally we have to account for the working space
of theARLE instances. For any fixed s ∈ [0, `−1] the space
used by all ARLE(r, s) instances is

∑`−1
r=0 runs(P r) =

O(k), which is O(k2) space over all s. Therefore, the
space complexity is O(k2) overall as claimed.

Time complexity. Finally, we show that the time
complexity of the k-mismatch pattern matching algorithm
is O(nk2 log k/m + n). The time complexity of the
Setup phase is O(1) time per symbol, or O(m) time
overall, by Lemma 6.4. The Handover phase starts by
computing the `-run length encoding of TL from the
modified encoding maintained through the Setup phase,
which can be done in O(k) time. It then performs the
initialising NEWRUN operations on the ARLE instances.
The total time complexity for all operations on the ARLE

instances will be accounted for below.
The Output phase is split into four steps. The first

step is also dominated by the NEWRUN operations on
the ARLE instances. The second step can be implemented
so that the time complexity is dominated by the DIFF
operations performed. In particular we need to avoid
spending O(`) time to check whether each r ∈ [0, ` − 1]
has i∗r,s = bi/`c. For each s we maintain a sorted linked
list of the current values of each i∗r,s. We can then find

all i∗r,s = bi/`c in time proportional to the number of
such i∗r,s which in turn is equal to the number of DIFF
operations performed. The third step takes O(1) time per
symbol via a simple counter, i.e. O(m) time in total.

Finally, we discuss the fourth step of the Output
phase. To compute the Hamming distances for i ∈
[i′L, i

′
L+`−1], we apply Lemma 6.5. This takesO(`) time

per symbol which is O(`2) = O(k2) time in total. For
the remaining Hamming distances we apply Lemma 6.6.
This would take O(`) as well if we applied it directly. To
avoid this, we compute the value of ∆`[i] from the value
of ∆`[i − `] by determining which terms have changed
and updating them.

FACT 6.1. ∆`[i] =
∑`−1
r=0 ∆r,R(r,i−`)[Q(r, i− `) + 1].

Proof. From the definitions of R and Q we have that
R(r, i) = R(r, i− `) and Q(r, i) = Q(r, i− `) + 1.

On the other hand, ∆`[i − `] =∑`−1
r=0 ∆r,R(r,i−`)[Q(r, i − `)] by definition. By

storing the most recent ∆r,s values for all (r, s) (see
Lemma 6.7), it is straightforward to determine which
terms have changed in time proportional to the number of
terms that have changed. Furthermore, for i1 6= i2 mod `
and r ∈ [0, ` − 1], we have that R(r, i1) 6= R(r, i2).
Consequently, for any (r, s, j), there is at most one value
of i such that ∆r,s[j] appears as a term in the expression
for ∆`[i]. Therefore the total time complexity for step
four is upper-bounded by the number of (r, s, j) such that
∆r,s(j) 6= ∆r,s(j − 1). This is in turn upper-bounded
by the total number of NEWRUN and DIFF operations
performed.

Remember that the total number of NEWRUN and
DIFF operations performed by all instances of ARLE is at
mostO(runs(P)·runs(T ?)) = O(k2). Therefore, the total
time complexity is O(m + k2) excluding the time taken
to perform the NEWRUN and DIFF operations. It remains
to give an upper bound on the total number of these
operations for eachARLE. For a given (r, s), the number of
NEWRUN operations on ARLE(r, s) is O(runs(T s)).

The time spent performing NEWRUN and DIFF
operations on ARLE(r, s) is therefore O(runs(P r) ·
log(runs(P r)) · runs(T ′s)). Summing over all ARLE in-
stances, and simplifying, we have that the total time com-
plexity is

O

(∑
r

runs(P r) ·
∑
s

runs(T s) · log k

)
= O(k2 log k).

Therefore the total time complexity of the entire
algorithm is O(m + k2 log k). It is important for the
deamortised algorithm we give in Theorem 1.4 (which
uses this algorithm as a black box) that if m ≥ 2k2

then for processing any k2 consecutive text symbols we
spend only O(k2 log k) time as the term m in the time
complexity comes from spending O(1) time per symbol
in the worst case.

7 Acknowledgements
We thank Hjalte Wedel Vildhøj for pointing out a typo
in our definition of small and large approximate period
cases.

References

[1] K. Abrahamson. Generalized string matching. SIAM
Journal on Computing, 16(6):1039–1051, 1987.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complex-
ity of approximating the frequency moments. In STOC
’00: Proc. 28th Annual ACM Symp. Theory of Computing,
pages 20–29. ACM, 1996.

[3] A. Amir, Y. Aumann, M. Lewenstein, and E. Porat. Func-
tion matching. SIAM Journal on Computing, 35(5):1007–
1022, 2006.

[4] A. Amir, Y. Aumann, G. Benson, A. Levy, O. Lipsky,
E. Porat, S. Skiena, and U. Vishne. Pattern matching
with address errors: Rearrangement distances. Journal of
Computer System Sciences, 75(6):359–370, 2009.

[5] A. Amir, Y. Aumann, O. Kapah, A. Levy, and E. Porat.
Approximate string matching with address bit errors. In
CPM ’08: Proc. 19th Annual Symp. on Combinatorial
Pattern Matching, pages 118–129, 2008.

[6] A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Po-
rat. Overlap matching. Information and Computation,
181(1):57–74, 2003.

[7] A. Amir, E. Eisenberg, and E. Porat. Swap and mismatch
edit distance. Algorithmica, 45(1):109–120, 2006.

[8] A. Amir, M. Farach, and S. Muthukrishnan. Alphabet de-
pendence in parameterized matching. Information Pro-
cessing Letters, 49(3):111–115, 1994.

[9] A. Amir, M. Lewenstein, and E. Porat. Faster algo-
rithms for string matching with k mismatches. In SODA
’00: Proc. 11th ACM-SIAM Symp. on Discrete Algorithms,
pages 794–803, 2000.

[10] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms
for string matching with k mismatches. Journal of Algo-
rithms, 50(2):257–275, 2004.

[11] D. Breslauer and Z. Galil. Real-time streaming string-
matching. In CPM ’11: Proc. 22nd Annual Symp. on
Combinatorial Pattern Matching, pages 162–172, 2011.

[12] K.-Y. Chen, P.-H. Hsu, and K.-M. Chao. Hardness of
comparing two run-length encoded strings. Journal of
Complexity, 26(4):364 – 374, 2010.

[13] R. Clifford, M. Jalsenius, E. Porat, and B. Sach. Space
lower bounds for online pattern matching. Theoretical
Computer Science, 483:58–74, 2013.

[14] R. Clifford, K. Efremenko, B. Porat, and E. Porat. A black
box for online approximate pattern matching. Information
and Computation, 209(4):731–736, 2011.

[15] R. Clifford, A. Fontaine, E. Porat, B. Sach, and
T. Starikovskaya. Dictionary matching in a stream. In ESA

’15: Proc. 23rd Annual European Symp. on Algorithms,
2015. In press.

[16] R. Clifford and B. Sach. Pseudo-realtime pattern match-
ing: Closing the gap. In CPM ’10: Proc. 21st Annual
Symp. on Combinatorial Pattern Matching, pages 101–
111, 2010.

[17] F. Ergun, H. Jowhari, and M. Sağlam. Periodicity in
streams. In RANDOM ’10: Proc. 14th Intl. Workshop on
Randomization and Computation, pages 545–559, 2010.

[18] W. Huang, Y. Shi, S. Zhang, and Y. Zhu. The communica-
tion complexity of the Hamming distance problem. Infor-
mation Processing Letters, 99(4):149–153, 2006.

[19] P. Indyk. Faster algorithms for string matching problems:
Matching the convolution bound. In FOCS ’98: Proc. 39th

Annual Symp. Foundations of Computer Science, pages
166–173, 1998.

[20] M. Jalsenius, B. Porat, and B. Sach. Parameterized
matching in the streaming model. In STACS ’13: Proc.
30th Annual Symp. on Theoretical Aspects of Computer
Science, pages 400–411, 2013.

[21] H. Karloff. Fast algorithms for approximately counting
mismatches. Information Processing Letters, 48(2):53–
60, 1993.

[22] R. M. Karp and M. O. Rabin. Efficient randomized
pattern-matching algorithms. IBM Journal of Research
and Development, 31(2):249 –260, 1987.

[23] S. R. Kosaraju. Efficient string matching. Manuscript,
1987.

[24] G. M. Landau and U. Vishkin. Efficient string match-
ing with k mismatches. Theoretical Computer Science,
43:239–249, 1986.

[25] G. M. Landau and U. Vishkin. Fast string matching
with k differences. Journal of Computer System Sciences,
37(1):63–78, 1988.

[26] B. Porat and E. Porat. Exact and approximate pattern
matching in the streaming model. In FOCS ’09: Proc. 50th

Annual Symp. Foundations of Computer Science, pages
315–323, 2009.

[27] J. B. Rosser and L. Schoenfeld. Approximate formulas
for some functions of prime numbers. Illinois J. Math,
6(1):64–94, 1962.

