1,289 research outputs found

    Recommendations and illustrations for the evaluation of photonic random number generators

    Full text link
    The never-ending quest to improve the security of digital information combined with recent improvements in hardware technology has caused the field of random number generation to undergo a fundamental shift from relying solely on pseudo-random algorithms to employing optical entropy sources. Despite these significant advances on the hardware side, commonly used statistical measures and evaluation practices remain ill-suited to understand or quantify the optical entropy that underlies physical random number generation. We review the state of the art in the evaluation of optical random number generation and recommend a new paradigm: quantifying entropy generation and understanding the physical limits of the optical sources of randomness. In order to do this, we advocate for the separation of the physical entropy source from deterministic post-processing in the evaluation of random number generators and for the explicit consideration of the impact of the measurement and digitization process on the rate of entropy production. We present the Cohen-Procaccia estimate of the entropy rate h(ϵ,τ)h(\epsilon,\tau) as one way to do this. In order to provide an illustration of our recommendations, we apply the Cohen-Procaccia estimate as well as the entropy estimates from the new NIST draft standards for physical random number generators to evaluate and compare three common optical entropy sources: single photon time-of-arrival detection, chaotic lasers, and amplified spontaneous emission

    A Pseudo Random Numbers Generator Based on Chaotic Iterations. Application to Watermarking

    Full text link
    In this paper, a new chaotic pseudo-random number generator (PRNG) is proposed. It combines the well-known ISAAC and XORshift generators with chaotic iterations. This PRNG possesses important properties of topological chaos and can successfully pass NIST and TestU01 batteries of tests. This makes our generator suitable for information security applications like cryptography. As an illustrative example, an application in the field of watermarking is presented.Comment: 11 pages, 7 figures, In WISM 2010, Int. Conf. on Web Information Systems and Mining, volume 6318 of LNCS, Sanya, China, pages 202--211, October 201

    A Search for Good Pseudo-random Number Generators : Survey and Empirical Studies

    Full text link
    In today's world, several applications demand numbers which appear random but are generated by a background algorithm; that is, pseudo-random numbers. Since late 19th19^{th} century, researchers have been working on pseudo-random number generators (PRNGs). Several PRNGs continue to develop, each one demanding to be better than the previous ones. In this scenario, this paper targets to verify the claim of so-called good generators and rank the existing generators based on strong empirical tests in same platforms. To do this, the genre of PRNGs developed so far has been explored and classified into three groups -- linear congruential generator based, linear feedback shift register based and cellular automata based. From each group, well-known generators have been chosen for empirical testing. Two types of empirical testing has been done on each PRNG -- blind statistical tests with Diehard battery of tests, TestU01 library and NIST statistical test-suite and graphical tests (lattice test and space-time diagram test). Finally, the selected 2929 PRNGs are divided into 2424 groups and are ranked according to their overall performance in all empirical tests

    Multiplexed Quantum Random Number Generation

    Get PDF
    Fast secure random number generation is essential for high-speed encrypted communication, and is the backbone of information security. Generation of truly random numbers depends on the intrinsic randomness of the process used and is usually limited by electronic bandwidth and signal processing data rates. Here we use a multiplexing scheme to create a fast quantum random number generator structurally tailored to encryption for distributed computing, and high bit-rate data transfer. We use vacuum fluctuations measured by seven homodyne detectors as quantum randomness sources, multiplexed using a single integrated optical device. We obtain a random number generation rate of 3.08 Gbit/s, from only 27.5 MHz of sampled detector bandwidth. Furthermore, we take advantage of the multiplexed nature of our system to demonstrate an unseeded strong extractor with a generation rate of 26 Mbit/s.Comment: 10 pages, 3 figures and 1 tabl

    Improving random number generators by chaotic iterations. Application in data hiding

    Full text link
    In this paper, a new pseudo-random number generator (PRNG) based on chaotic iterations is proposed. This method also combines the digits of two XORshifts PRNGs. The statistical properties of this new generator are improved: the generated sequences can pass all the DieHARD statistical test suite. In addition, this generator behaves chaotically, as defined by Devaney. This makes our generator suitable for cryptographic applications. An illustration in the field of data hiding is presented and the robustness of the obtained data hiding algorithm against attacks is evaluated.Comment: 6 pages, 8 figures, In ICCASM 2010, Int. Conf. on Computer Application and System Modeling, Taiyuan, China, pages ***--***, October 201
    • …
    corecore