8,338 research outputs found

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Теорія систем мобільних інфокомунікацій. Системна архітектура

    Get PDF
    Навчальний посібник містить опис логічних та фізичних структур, процедур, алгоритмів, протоколів, принципів побудови і функціонування мереж стільникового мобільного зв’язку (до 3G) і мобільних інфокомунікацій (4G і вище), приділяючи увагу розгляду загальних архітектур мереж операторів мобільного зв’язку, їх управління і координування, неперервності еволюції розвитку засобів функціонування і способів надання послуг таких мереж. Посібник структурно має сім розділів і побудований так, що складність матеріалу зростає з кожним наступним розділом. Навчальний посібник призначено для здобувачів ступеня бакалавра за спеціальністю 172 «Телекомунікації та радіотехніка», буде також корисним для аспірантів, наукових та інженерно-технічних працівників за напрямом інформаційно-телекомунікаційних систем та технологій.The manual contains a description of the logical and physical structures, procedures, algorithms, protocols, principles of construction and operation of cellular networks for mobile communications (up to 3G) and mobile infocommunications (4G and higher), paying attention to the consideration of general architectures of mobile operators' networks, their management, and coordination, the continuous evolution of the development of the means of operation and methods of providing services of such networks. The manual has seven structural sections and is structured in such a way that the complexity of the material increases with each subsequent chapter. The textbook is intended for applicants for a bachelor's degree in specialty 172 "Telecommunications and Radio Engineering", and will also be useful to graduate students, and scientific and engineering workers in the direction of information and telecommunication systems and technologies

    Reinforcement Learning-based User-centric Handover Decision-making in 5G Vehicular Networks

    Get PDF
    The advancement of 5G technologies and Vehicular Networks open a new paradigm for Intelligent Transportation Systems (ITS) in safety and infotainment services in urban and highway scenarios. Connected vehicles are vital for enabling massive data sharing and supporting such services. Consequently, a stable connection is compulsory to transmit data across the network successfully. The new 5G technology introduces more bandwidth, stability, and reliability, but it faces a low communication range, suffering from more frequent handovers and connection drops. The shift from the base station-centric view to the user-centric view helps to cope with the smaller communication range and ultra-density of 5G networks. In this thesis, we propose a series of strategies to improve connection stability through efficient handover decision-making. First, a modified probabilistic approach, M-FiVH, aimed at reducing 5G handovers and enhancing network stability. Later, an adaptive learning approach employed Connectivity-oriented SARSA Reinforcement Learning (CO-SRL) for user-centric Virtual Cell (VC) management to enable efficient handover (HO) decisions. Following that, a user-centric Factor-distinct SARSA Reinforcement Learning (FD-SRL) approach combines time series data-oriented LSTM and adaptive SRL for VC and HO management by considering both historical and real-time data. The random direction of vehicular movement, high mobility, network load, uncertain road traffic situation, and signal strength from cellular transmission towers vary from time to time and cannot always be predicted. Our proposed approaches maintain stable connections by reducing the number of HOs by selecting the appropriate size of VCs and HO management. A series of improvements demonstrated through realistic simulations showed that M-FiVH, CO-SRL, and FD-SRL were successful in reducing the number of HOs and the average cumulative HO time. We provide an analysis and comparison of several approaches and demonstrate our proposed approaches perform better in terms of network connectivity

    Redefining Community in the Age of the Internet: Will the Internet of Things (IoT) generate sustainable and equitable community development?

    Get PDF
    There is a problem so immense in our built world that it is often not fully realized. This problem is the disconnection between humanity and the physical world. In an era of limitless data and information at our fingertips, buildings, public spaces, and landscapes are divided from us due to their physical nature. Compared with the intense flow of information from our online world driven by the beating engine of the internet, our physical world is silent. This lack of connection not only has consequences for sustainability but also for how we perceive and communicate with our built environment in the modern age. A possible solution to bridge the gap between our physical and online worlds is a technology known as the Internet of Things (IoT). What is IoT? How does it work? Will IoT change the concept of the built environment for a participant within it, and in doing so enhance the dynamic link between humans and place? And what are the implications of IoT for privacy, security, and data for the public good? Lastly, we will identify the most pressing issues existing in the built environment by conducting and analyzing case studies from Pomona College and California State University, Northridge. By analyzing IoT in the context of case studies we can assess its viability and value as a tool for sustainability and equality in communities across the world

    Deep Transfer Learning Applications in Intrusion Detection Systems: A Comprehensive Review

    Full text link
    Globally, the external Internet is increasingly being connected to the contemporary industrial control system. As a result, there is an immediate need to protect the network from several threats. The key infrastructure of industrial activity may be protected from harm by using an intrusion detection system (IDS), a preventive measure mechanism, to recognize new kinds of dangerous threats and hostile activities. The most recent artificial intelligence (AI) techniques used to create IDS in many kinds of industrial control networks are examined in this study, with a particular emphasis on IDS-based deep transfer learning (DTL). This latter can be seen as a type of information fusion that merge, and/or adapt knowledge from multiple domains to enhance the performance of the target task, particularly when the labeled data in the target domain is scarce. Publications issued after 2015 were taken into account. These selected publications were divided into three categories: DTL-only and IDS-only are involved in the introduction and background, and DTL-based IDS papers are involved in the core papers of this review. Researchers will be able to have a better grasp of the current state of DTL approaches used in IDS in many different types of networks by reading this review paper. Other useful information, such as the datasets used, the sort of DTL employed, the pre-trained network, IDS techniques, the evaluation metrics including accuracy/F-score and false alarm rate (FAR), and the improvement gained, were also covered. The algorithms, and methods used in several studies, or illustrate deeply and clearly the principle in any DTL-based IDS subcategory are presented to the reader

    Bridging technology and educational psychology: an exploration of individual differences in technology-assisted language learning within an Algerian EFL setting

    Get PDF
    The implementation of technology in language learning and teaching has a great influence onthe teaching and learning process as a whole and its impact on the learners’ psychological state seems of paramount significance, since it could be either an aid or a barrier to students’ academic performance. This thesis therefore explores individual learner differences in technology-assisted language learning (TALL) and when using educational technologies in higher education within an Algerian English as a Foreign Language (EFL) setting. Although I initially intended to investigate the relationship between TALL and certain affective variables mainly motivation, anxiety, self-confidence, and learning styles inside the classroom, the collection and analysis of data shifted my focus to a holistic view of individual learner differences in TALL environments and when using educational technologies within and beyond the classroom. In an attempt to bridge technology and educational psychology, this ethnographic case study considers the nature of the impact of technology integration in language teaching and learning on the psychology of individual language learners inside and outside the classroom. The study considers the reality constructed by participants and reveals multiple and distinctive views about the relationship between the use of educational technologies in higher education and individual learner differences. It took place in a university in the north-west of Algeria and involved 27 main and secondary student and teacher participants. It consisted of focus-group discussions, follow-up discussions, teachers’ interviews, learners’ diaries, observation, and field notes. It was initially conducted within the classroom but gradually expanded to other settings outside the classroom depending on the availability of participants, their actions, and activities. The study indicates that the impact of technology integration in EFL learning on individual learner differences is both complex and dynamic. It is complex in the sense that it is shown in multiple aspects and reflected on the students and their differences. In addition to various positive and different negative influences of different technology uses and the different psychological reactions among students to the same technology scenario, the study reveals the unrecognised different manifestations of similar psychological traits in the same ELT technology scenario. It is also dynamic since it is characterised by constant change according to contextual approaches to and practical realities of technology integration in language teaching and learning in the setting, including discrepancies between students’ attitudes and teacher’ actions, mismatches between technological experiences inside and outside the classroom, local concerns and generalised beliefs about TALL in the context, and the rapid and unplanned shift to online educational delivery during the Covid-19 pandemic situation. The study may therefore be of interest, not only to Algerian teachers and students, but also to academics and institutions in other contexts through considering the complex and dynamic impact of TALL and technology integration at higher education on individual differences, and to academics in similar low-resource contexts by undertaking a context approach to technology integration

    Reconfigurable Intelligent Surface Aided Cellular Networks With Device-to-Device Users

    Get PDF

    Um modelo para suporte automatizado ao reconhecimento, extração, personalização e reconstrução de gráficos estáticos

    Get PDF
    Data charts are widely used in our daily lives, being present in regular media, such as newspapers, magazines, web pages, books, and many others. A well constructed data chart leads to an intuitive understanding of its underlying data and in the same way, when data charts have wrong design choices, a redesign of these representations might be needed. However, in most cases, these charts are shown as a static image, which means that the original data are not usually available. Therefore, automatic methods could be applied to extract the underlying data from the chart images to allow these changes. The task of recognizing charts and extracting data from them is complex, largely due to the variety of chart types and their visual characteristics. Computer Vision techniques for image classification and object detection are widely used for the problem of recognizing charts, but only in images without any disturbance. Other features in real-world images that can make this task difficult are not present in most literature works, like photo distortions, noise, alignment, etc. Two computer vision techniques that can assist this task and have been little explored in this context are perspective detection and correction. These methods transform a distorted and noisy chart in a clear chart, with its type ready for data extraction or other uses. The task of reconstructing data is straightforward, as long the data is available the visualization can be reconstructed, but the scenario of reconstructing it on the same context is complex. Using a Visualization Grammar for this scenario is a key component, as these grammars usually have extensions for interaction, chart layers, and multiple views without requiring extra development effort. This work presents a model for automated support for custom recognition, and reconstruction of charts in images. The model automatically performs the process steps, such as reverse engineering, turning a static chart back into its data table for later reconstruction, while allowing the user to make modifications in case of uncertainties. This work also features a model-based architecture along with prototypes for various use cases. Validation is performed step by step, with methods inspired by the literature. This work features three use cases providing proof of concept and validation of the model. The first use case features usage of chart recognition methods focused on documents in the real-world, the second use case focus on vocalization of charts, using a visualization grammar to reconstruct a chart in audio format, and the third use case presents an Augmented Reality application that recognizes and reconstructs charts in the same context (a piece of paper) overlaying the new chart and interaction widgets. The results showed that with slight changes, chart recognition and reconstruction methods are now ready for real-world charts, when taking time, accuracy and precision into consideration.Os gráficos de dados são amplamente utilizados na nossa vida diária, estando presentes nos meios de comunicação regulares, tais como jornais, revistas, páginas web, livros, e muitos outros. Um gráfico bem construído leva a uma compreensão intuitiva dos seus dados inerentes e da mesma forma, quando os gráficos de dados têm escolhas de conceção erradas, poderá ser necessário um redesenho destas representações. Contudo, na maioria dos casos, estes gráficos são mostrados como uma imagem estática, o que significa que os dados originais não estão normalmente disponíveis. Portanto, poderiam ser aplicados métodos automáticos para extrair os dados inerentes das imagens dos gráficos, a fim de permitir estas alterações. A tarefa de reconhecer os gráficos e extrair dados dos mesmos é complexa, em grande parte devido à variedade de tipos de gráficos e às suas características visuais. As técnicas de Visão Computacional para classificação de imagens e deteção de objetos são amplamente utilizadas para o problema de reconhecimento de gráficos, mas apenas em imagens sem qualquer ruído. Outras características das imagens do mundo real que podem dificultar esta tarefa não estão presentes na maioria das obras literárias, como distorções fotográficas, ruído, alinhamento, etc. Duas técnicas de visão computacional que podem ajudar nesta tarefa e que têm sido pouco exploradas neste contexto são a deteção e correção da perspetiva. Estes métodos transformam um gráfico distorcido e ruidoso em um gráfico limpo, com o seu tipo pronto para extração de dados ou outras utilizações. A tarefa de reconstrução de dados é simples, desde que os dados estejam disponíveis a visualização pode ser reconstruída, mas o cenário de reconstrução no mesmo contexto é complexo. A utilização de uma Gramática de Visualização para este cenário é um componente chave, uma vez que estas gramáticas têm normalmente extensões para interação, camadas de gráficos, e visões múltiplas sem exigir um esforço extra de desenvolvimento. Este trabalho apresenta um modelo de suporte automatizado para o reconhecimento personalizado, e reconstrução de gráficos em imagens estáticas. O modelo executa automaticamente as etapas do processo, tais como engenharia inversa, transformando um gráfico estático novamente na sua tabela de dados para posterior reconstrução, ao mesmo tempo que permite ao utilizador fazer modificações em caso de incertezas. Este trabalho também apresenta uma arquitetura baseada em modelos, juntamente com protótipos para vários casos de utilização. A validação é efetuada passo a passo, com métodos inspirados na literatura. Este trabalho apresenta três casos de uso, fornecendo prova de conceito e validação do modelo. O primeiro caso de uso apresenta a utilização de métodos de reconhecimento de gráficos focando em documentos no mundo real, o segundo caso de uso centra-se na vocalização de gráficos, utilizando uma gramática de visualização para reconstruir um gráfico em formato áudio, e o terceiro caso de uso apresenta uma aplicação de Realidade Aumentada que reconhece e reconstrói gráficos no mesmo contexto (um pedaço de papel) sobrepondo os novos gráficos e widgets de interação. Os resultados mostraram que com pequenas alterações, os métodos de reconhecimento e reconstrução dos gráficos estão agora prontos para os gráficos do mundo real, tendo em consideração o tempo, a acurácia e a precisão.Programa Doutoral em Engenharia Informátic
    corecore