2,616 research outputs found

    Asynchronous Parallel Stochastic Gradient Descent - A Numeric Core for Scalable Distributed Machine Learning Algorithms

    Full text link
    The implementation of a vast majority of machine learning (ML) algorithms boils down to solving a numerical optimization problem. In this context, Stochastic Gradient Descent (SGD) methods have long proven to provide good results, both in terms of convergence and accuracy. Recently, several parallelization approaches have been proposed in order to scale SGD to solve very large ML problems. At their core, most of these approaches are following a map-reduce scheme. This paper presents a novel parallel updating algorithm for SGD, which utilizes the asynchronous single-sided communication paradigm. Compared to existing methods, Asynchronous Parallel Stochastic Gradient Descent (ASGD) provides faster (or at least equal) convergence, close to linear scaling and stable accuracy

    Making Asynchronous Stochastic Gradient Descent Work for Transformers

    Get PDF
    Asynchronous stochastic gradient descent (SGD) is attractive from a speed perspective because workers do not wait for synchronization. However, the Transformer model converges poorly with asynchronous SGD, resulting in substantially lower quality compared to synchronous SGD. To investigate why this is the case, we isolate differences between asynchronous and synchronous methods to investigate batch size and staleness effects. We find that summing several asynchronous updates, rather than applying them immediately, restores convergence behavior. With this hybrid method, Transformer training for neural machine translation task reaches a near-convergence level 1.36x faster in single-node multi-GPU training with no impact on model quality

    Asynchronous Distributed Semi-Stochastic Gradient Optimization

    Full text link
    With the recent proliferation of large-scale learning problems,there have been a lot of interest on distributed machine learning algorithms, particularly those that are based on stochastic gradient descent (SGD) and its variants. However, existing algorithms either suffer from slow convergence due to the inherent variance of stochastic gradients, or have a fast linear convergence rate but at the expense of poorer solution quality. In this paper, we combine their merits by proposing a fast distributed asynchronous SGD-based algorithm with variance reduction. A constant learning rate can be used, and it is also guaranteed to converge linearly to the optimal solution. Experiments on the Google Cloud Computing Platform demonstrate that the proposed algorithm outperforms state-of-the-art distributed asynchronous algorithms in terms of both wall clock time and solution quality
    • …
    corecore