5,635 research outputs found

    Liquid State Machine with Dendritically Enhanced Readout for Low-power, Neuromorphic VLSI Implementations

    Full text link
    In this paper, we describe a new neuro-inspired, hardware-friendly readout stage for the liquid state machine (LSM), a popular model for reservoir computing. Compared to the parallel perceptron architecture trained by the p-delta algorithm, which is the state of the art in terms of performance of readout stages, our readout architecture and learning algorithm can attain better performance with significantly less synaptic resources making it attractive for VLSI implementation. Inspired by the nonlinear properties of dendrites in biological neurons, our readout stage incorporates neurons having multiple dendrites with a lumped nonlinearity. The number of synaptic connections on each branch is significantly lower than the total number of connections from the liquid neurons and the learning algorithm tries to find the best 'combination' of input connections on each branch to reduce the error. Hence, the learning involves network rewiring (NRW) of the readout network similar to structural plasticity observed in its biological counterparts. We show that compared to a single perceptron using analog weights, this architecture for the readout can attain, even by using the same number of binary valued synapses, up to 3.3 times less error for a two-class spike train classification problem and 2.4 times less error for an input rate approximation task. Even with 60 times larger synapses, a group of 60 parallel perceptrons cannot attain the performance of the proposed dendritically enhanced readout. An additional advantage of this method for hardware implementations is that the 'choice' of connectivity can be easily implemented exploiting address event representation (AER) protocols commonly used in current neuromorphic systems where the connection matrix is stored in memory. Also, due to the use of binary synapses, our proposed method is more robust against statistical variations.Comment: 14 pages, 19 figures, Journa

    Using Kernel Perceptrons to Learn Action Effects for Planning

    Get PDF
    Abstract — We investigate the problem of learning action effects in STRIPS and ADL planning domains. Our approach is based on a kernel perceptron learning model, where action and state information is encoded in a compact vector representation as input to the learning mechanism, and resulting state changes are produced as output. Empirical results of our approach indicate efficient training and prediction times, with low average error rates (< 3%) when tested on STRIPS and ADL versions of an object manipulation scenario. This work is part of a project to integrate machine learning techniques with a planning system, as part of a larger cognitive architecture linking a highlevel reasoning component with a low-level robot/vision system. I

    Neural Networks for Complex Data

    Full text link
    Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Universit\'e Paris

    Perceptron learning with random coordinate descent

    Get PDF
    A perceptron is a linear threshold classifier that separates examples with a hyperplane. It is perhaps the simplest learning model that is used standalone. In this paper, we propose a family of random coordinate descent algorithms for perceptron learning on binary classification problems. Unlike most perceptron learning algorithms which require smooth cost functions, our algorithms directly minimize the training error, and usually achieve the lowest training error compared with other algorithms. The algorithms are also computational efficient. Such advantages make them favorable for both standalone use and ensemble learning, on problems that are not linearly separable. Experiments show that our algorithms work very well with AdaBoost, and achieve the lowest test errors for half of the datasets
    corecore