56 research outputs found

    Fast Weak-Kam Integrators for separable Hamiltonian systems

    Get PDF
    International audienceWe consider a numerical scheme for Hamilton-Jacobi equations based on a direct discretization of the Lax-Oleinik semi-group. We prove that this method is convergent with respect to the time and space stepsizes provided the solution is Lipschitz, and give an error estimate. Moreover, we prove that the numerical scheme is a {\em geometric integrator} satisfying a discrete weak-KAM theorem which allows to control its long time behavior. Taking advantage of a fast algorithm for computing min-plus convolutions based on the decomposition of the function into concave and convex parts, we show that the numerical scheme can be implemented in a very efficient way

    Analysis of the Chaotic Behavior of the Lower Hybrid Wave Propagation in Magnetised Plasma by Hamiltonian Theory

    Get PDF
    The Hamiltonian character of the ray tracing equations describing the propagation of the Lower Hybrid Wave (LHW) in a magnetic confined plasma device (tokamak) is investigated in order to study the evolution of the parallel wave number along the propagation path. The chaotic diffusion of the "time-averaged" parallel wave number at higher values (with respect to that launched by the antenna at the plasma edge) has been evaluated, in order to find an explanation of the filling of the spectral gap (Fisch, 1987) by "Hamiltonian chaos" in the Lower Hybrid Current Drive (LHCD) experiments (Fisch, 1978). The present work shows that the increase of the parallel wave number n∄n_{\parallel} due to toroidal effects, in the case of the typical plasma parameters of the Frascati Tokamak Upgrade (FTU) experiment, is insufficient to explain the filling of the spectral gap, and the consequent current drive and another mechanism must come into play to justify the wave absorption by Landau damping. Analytical calculations have been supplemented by a numerical algorithm based on the symplectic integration of the ray equations implemented in a ray tracing code, in order to preserve exactly the symplectic character of a Hamiltonian flow

    Local predictability in a simple model of atmospheric balance

    No full text
    International audienceThe 2 degree-of-freedom elastic pendulum equations can be considered as the lowest order analogue of interacting low-frequency (slow) Rossby-Haurwitz and high-frequency (fast) gravity waves in the atmosphere. The strength of the coupling between the low and the high frequency waves is controlled by a single coupling parameter, e, defined by the ratio of the fast and slow characteristic time scales. In this paper, efficient, high accuracy, and symplectic structure preserving numerical solutions are designed for the elastic pendulum equation in order to study the role balanced dynamics play in local predictability. To quantify changes in the local predictability, two measures are considered: the local Lyapunov number and the leading singular value of the tangent linear map. It is shown, both based on theoretical considerations and numerical experiments, that there exist regions of the phase space where the local Lyapunov number indicates exceptionally high predictability, while the dominant singular value indicates exceptionally low predictability. It is also demonstrated that the local Lyapunov number has a tendency to choose instabilities associated with balanced motions, while the dominant singular value favors instabilities related to highly unbalanced motions. The implications of these findings for atmospheric dynamics are also discussed

    Adaptive Geometric Numerical Integration of Mechanical Systems

    Get PDF
    This thesis is about structure preserving numerical integration of initial value problems, i.e., so called geometric numerical integrators. In particular, we are interested in how time-step adaptivity can be achieved in conjunction with structure preserving properties without destroying the good long time integration properties which are typical for geometric integration methods. As a specific application we consider dynamic simulations of rolling bearings and rotor dynamical problems. The work is part of a research collaboration between SKF (www.skf.com) and the Centre of Mathematical Sciences at Lund University

    Multiscale Problems in Mechanics: Spin Dynamics, Structure-Preserving Integration, and Data-Driven Methods

    Get PDF
    This thesis focuses on analyzing the physics and designing multiscale methods for nonlinear dynamics in mechanical systems, such as those in astronomy. The planetary systems (e.g., the Solar System) are of great interest as rich dynamics of different scales contribute to many interesting physics. Outside the Solar System, a bursting number of exoplanets have been discovered in recent years, raising interest in understanding the effects of the spin dynamics to the habitability. In part I of this thesis, we investigate the spin dynamics of circumbinary exoplanets, which are planets that orbit around stellar binaries. We found that habitable zone planets around the stellar binaries in near coplanar orbits may hold higher potential for stable climate compared to their single star analogues. And in terms of methodology, secular theory of the slow dominating dynamics is calculated via averaging. Beyond analyzing the dynamics mathematically, to simulate the spin-orbit dynamics for long term accurately, symplectic Lie-group (multiscale) integrators are designed to simulate systems consisting of gravitationally interacting rigid bodies in part II of the thesis. Schematically, slow and fast scales are tailored to compose efficient algorithms. And the integrators are tested via our package GRIT. For the systems that are almost impossible to simulate (e.g., the Solar System with the asteroid belt), how can we understand the dynamics from the observations? In part III, we consider the learning and prediction of nonlinear time series purely from observations of symplectic maps. We represent the symplectic map by a generating function, which we approximate by a neural network (hence the name GFNN). And we will prove, under reasonable assumptions, the global prediction error grows at most linearly with long prediction time as the prediction map is symplectic.Ph.D
    • 

    corecore