97,748 research outputs found

    Low-Rank Matrices on Graphs: Generalized Recovery & Applications

    Get PDF
    Many real world datasets subsume a linear or non-linear low-rank structure in a very low-dimensional space. Unfortunately, one often has very little or no information about the geometry of the space, resulting in a highly under-determined recovery problem. Under certain circumstances, state-of-the-art algorithms provide an exact recovery for linear low-rank structures but at the expense of highly inscalable algorithms which use nuclear norm. However, the case of non-linear structures remains unresolved. We revisit the problem of low-rank recovery from a totally different perspective, involving graphs which encode pairwise similarity between the data samples and features. Surprisingly, our analysis confirms that it is possible to recover many approximate linear and non-linear low-rank structures with recovery guarantees with a set of highly scalable and efficient algorithms. We call such data matrices as \textit{Low-Rank matrices on graphs} and show that many real world datasets satisfy this assumption approximately due to underlying stationarity. Our detailed theoretical and experimental analysis unveils the power of the simple, yet very novel recovery framework \textit{Fast Robust PCA on Graphs

    Robust Singular Smoothers For Tracking Using Low-Fidelity Data

    Full text link
    Tracking underwater autonomous platforms is often difficult because of noisy, biased, and discretized input data. Classic filters and smoothers based on standard assumptions of Gaussian white noise break down when presented with any of these challenges. Robust models (such as the Huber loss) and constraints (e.g. maximum velocity) are used to attenuate these issues. Here, we consider robust smoothing with singular covariance, which covers bias and correlated noise, as well as many specific model types, such as those used in navigation. In particular, we show how to combine singular covariance models with robust losses and state-space constraints in a unified framework that can handle very low-fidelity data. A noisy, biased, and discretized navigation dataset from a submerged, low-cost inertial measurement unit (IMU) package, with ultra short baseline (USBL) data for ground truth, provides an opportunity to stress-test the proposed framework with promising results. We show how robust modeling elements improve our ability to analyze the data, and present batch processing results for 10 minutes of data with three different frequencies of available USBL position fixes (gaps of 30 seconds, 1 minute, and 2 minutes). The results suggest that the framework can be extended to real-time tracking using robust windowed estimation.Comment: 9 pages, 9 figures, to be included in Robotics: Science and Systems 201

    Robust localization methods for passivity enforcement of linear macromodels

    Get PDF
    In this paper we solve a non-smooth convex formulation for passivity enforcement of linear macromodels using robust localization based algorithms such as the ellipsoid and the cutting plane methods. Differently from existing perturbation based techniques, we solve the formulation based on the direct ℌ∞ norm minimization through perturbation of state-space model parameters. We provide a systematic way of defining an initial set which is guaranteed to contain the global optimum. We also provide a lower bound on the global minimum, that grows tighter at each iteration and hence guarantees δ - optimality of the computed solution. We demonstrate the robustness of our implementation by generating accurate passive models for challenging examples for which existing algorithms either failed or exhibited extremely slow convergenc
    corecore