4,535 research outputs found

    Broadcasting in Prefix Space: P2P Data Dissemination with Predictable Performance

    Full text link
    A broadcast mode may augment peer-to-peer overlay networks with an efficient, scalable data replication function, but may also give rise to a virtual link layer in VPN-type solutions. We introduce a simple broadcasting mechanism that operates in the prefix space of distributed hash tables without signaling. This paper concentrates on the performance analysis of the prefix flooding scheme. Starting from simple models of recursive kk-ary trees, we analytically derive distributions of hop counts and the replication load. Extensive simulation results are presented further on, based on an implementation within the OverSim framework. Comparisons are drawn to Scribe, taken as a general reference model for group communication according to the shared, rendezvous-point-centered distribution paradigm. The prefix flooding scheme thereby confirmed its widely predictable performance and consistently outperformed Scribe in all metrics. Reverse path selection in overlays is identified as a major cause of performance degradation.Comment: final version for ICIW'0

    Understanding the Properties of the BitTorrent Overlay

    Get PDF
    In this paper, we conduct extensive simulations to understand the properties of the overlay generated by BitTorrent. We start by analyzing how the overlay properties impact the efficiency of BitTorrent. We focus on the average peer set size (i.e., average number of neighbors), the time for a peer to reach its maximum peer set size, and the diameter of the overlay. In particular, we show that the later a peer arrives in a torrent, the longer it takes to reach its maximum peer set size. Then, we evaluate the impact of the maximum peer set size, the maximum number of outgoing connections per peer, and the number of NATed peers on the overlay properties. We show that BitTorrent generates a robust overlay, but that this overlay is not a random graph. In particular, the connectivity of a peer to its neighbors depends on its arriving order in the torrent. We also show that a large number of NATed peers significantly compromise the robustness of the overlay to attacks. Finally, we evaluate the impact of peer exchange on the overlay properties, and we show that it generates a chain-like overlay with a large diameter, which will adversely impact the efficiency of large torrents

    Swarming Overlay Construction Strategies

    Get PDF
    Swarming peer-to-peer systems play an increasingly instrumental role in Internet content distribution. It is therefore important to better understand how these systems behave in practice. Recent research efforts have looked at various protocol parameters and have measured how they affect system performance and robustness. However, the importance of the strategy based on which peers establish connections has been largely overlooked. This work utilizes extensive simulations to examine the default overlay construction strategy in BitTorrent systems. Based on the results, we identify a critical parameter, the maximum allowable number of outgoing connections at each peer, and evaluate its impact on the robustness of the generated overlay. We find that there is no single optimal value for this parameter using the default strategy. We then propose an alternative strategy that allows certain new peer connection requests to replace existing connections. Further experiments with the new strategy demonstrate that it outperforms the default one for all considered metrics by creating an overlay more robust to churn. Additionally, our proposed strategy exhibits optimal behavior for a well-defined value of the maximum number of outgoing connections, thereby removing the need to set this parameter in an ad-hoc manner

    Flower-CDN: A hybrid P2P overlay for Efficient Query Processing in CDN

    Get PDF
    International audienceMany websites with a large user base, e.g., websites of non-profit organizations, do not have the financial means to install large web-servers or use specialized content distribution networks such as Akamai. For those websites, we have developed Flower-CDN, a locality-aware peer-to-peer based content-distribution network in which the users that are interested in a website support the distribution of its content. The idea is that peers keep the web-pages they retrieve and later serve them to other peers that are close to them in locality. Our architecture is a hybrid between structured and unstructured networks. When a node requests a web-page from a website for the first time, a locality-aware DHT quickly finds a peer in its neighborhood that has the web-page available. Additionally, all peers in a given region that maintain content of a particular website build an unstructured content overlay. Within a content overlay peers gossip information about their content allowing the system to maintain accurate information despite failures and churn. In our detailed performance evaluation, we compare Flower-CDN with Squirrel, which is a content distribution network that is strictly based on DHTs and not locality aware. Compared to Squirrel, Flower-CDN reduces lookup latency by a factor of 9 and the transfer distance by a factor of 2. We also show that Flower-CDN's gossiping has low overhead and can be adjusted according to hit ratio requirements and bandwidth availability

    Socially-Aware Distributed Hash Tables for Decentralized Online Social Networks

    Full text link
    Many decentralized online social networks (DOSNs) have been proposed due to an increase in awareness related to privacy and scalability issues in centralized social networks. Such decentralized networks transfer processing and storage functionalities from the service providers towards the end users. DOSNs require individualistic implementation for services, (i.e., search, information dissemination, storage, and publish/subscribe). However, many of these services mostly perform social queries, where OSN users are interested in accessing information of their friends. In our work, we design a socially-aware distributed hash table (DHTs) for efficient implementation of DOSNs. In particular, we propose a gossip-based algorithm to place users in a DHT, while maximizing the social awareness among them. Through a set of experiments, we show that our approach reduces the lookup latency by almost 30% and improves the reliability of the communication by nearly 10% via trusted contacts.Comment: 10 pages, p2p 2015 conferenc

    Content Distribution in P2P Systems

    Get PDF
    The report provides a literature review of the state-of-the-art for content distribution. The report's contributions are of threefold. First, it gives more insight into traditional Content Distribution Networks (CDN), their requirements and open issues. Second, it discusses Peer-to-Peer (P2P) systems as a cheap and scalable alternative for CDN and extracts their design challenges. Finally, it evaluates the existing P2P systems dedicated for content distribution according to the identied requirements and challenges
    • …
    corecore