502 research outputs found
Fast non-negative deconvolution for spike train inference from population calcium imaging
Calcium imaging for observing spiking activity from large populations of
neurons are quickly gaining popularity. While the raw data are fluorescence
movies, the underlying spike trains are of interest. This work presents a fast
non-negative deconvolution filter to infer the approximately most likely spike
train for each neuron, given the fluorescence observations. This algorithm
outperforms optimal linear deconvolution (Wiener filtering) on both simulated
and biological data. The performance gains come from restricting the inferred
spike trains to be positive (using an interior-point method), unlike the Wiener
filter. The algorithm is fast enough that even when imaging over 100 neurons,
inference can be performed on the set of all observed traces faster than
real-time. Performing optimal spatial filtering on the images further refines
the estimates. Importantly, all the parameters required to perform the
inference can be estimated using only the fluorescence data, obviating the need
to perform joint electrophysiological and imaging calibration experiments.Comment: 22 pages, 10 figure
Bayesian spike inference from calcium imaging data
We present efficient Bayesian methods for extracting neuronal spiking
information from calcium imaging data. The goal of our methods is to sample
from the posterior distribution of spike trains and model parameters (baseline
concentration, spike amplitude etc) given noisy calcium imaging data. We
present discrete time algorithms where we sample the existence of a spike at
each time bin using Gibbs methods, as well as continuous time algorithms where
we sample over the number of spikes and their locations at an arbitrary
resolution using Metropolis-Hastings methods for point processes. We provide
Rao-Blackwellized extensions that (i) marginalize over several model parameters
and (ii) provide smooth estimates of the marginal spike posterior distribution
in continuous time. Our methods serve as complements to standard point
estimates and allow for quantification of uncertainty in estimating the
underlying spike train and model parameters
A finite rate of innovation algorithm for fast and accurate spike detection from two-photon calcium imaging
OBJECTIVE: Inferring the times of sequences of action potentials (APs) (spike trains) from neurophysiological data is a key problem in computational neuroscience. The detection of APs from two-photon imaging of calcium signals offers certain advantages over traditional electrophysiological approaches, as up to thousands of spatially and immunohistochemically defined neurons can be recorded simultaneously. However, due to noise, dye buffering and the limited sampling rates in common microscopy configurations, accurate detection of APs from calcium time series has proved to be a difficult problem. APPROACH: Here we introduce a novel approach to the problem making use of finite rate of innovation (FRI) theory (Vetterli et al 2002 IEEE Trans. Signal Process. 50 1417–28). For calcium transients well fit by a single exponential, the problem is reduced to reconstructing a stream of decaying exponentials. Signals made of a combination of exponentially decaying functions with different onset times are a subclass of FRI signals, for which much theory has recently been developed by the signal processing community. MAIN RESULTS: We demonstrate for the first time the use of FRI theory to retrieve the timing of APs from calcium transient time series. The final algorithm is fast, non-iterative and parallelizable. Spike inference can be performed in real-time for a population of neurons and does not require any training phase or learning to initialize parameters. SIGNIFICANCE: The algorithm has been tested with both real data (obtained by simultaneous electrophysiology and multiphoton imaging of calcium signals in cerebellar Purkinje cell dendrites), and surrogate data, and outperforms several recently proposed methods for spike train inference from calcium imaging data
Benchmarking spike rate inference in population calcium imaging
A fundamental challenge in calcium imaging has been to infer spike rates of neurons from the measured noisy fluorescence traces. We systematically evaluate different spike inference algorithms on a large benchmark dataset (>100,000 spikes) recorded from varying neural tissue (V1 and retina) using different calcium indicators (OGB-1 and
GCaMP6). In addition, we introduce a new algorithm based on supervised learning in flexible probabilistic models and find that it performs better than other published techniques. Importantly, it outperforms other algorithms even when applied to entirely new datasets for which no simultaneously recorded data is available. Future data acquired in new experimental conditions can be used to further improve the spike prediction accuracy and generalization performance of the model. Finally, we show that comparing algorithms on artificial data is not informative about performance on real data, suggesting
that benchmarking different methods with real-world
datasets may greatly facilitate future algorithmic developments in neuroscience
Suite2p: beyond 10,000 neurons with standard two-photon microscopy
Two-photon microscopy of calcium-dependent sensors has enabled unprecedented recordings from vast populations of neurons. While the sensors and microscopes have matured over several generations of development, computational methods to process the resulting movies remain inefficient and can give results that are hard to interpret. Here we introduce Suite2p: a fast, accurate and complete pipeline that registers raw movies, detects active cells, extracts their calcium traces and infers their spike times. Suite2p runs on standard workstations, operates faster than real time, and recovers ~2 times more cells than the previous state-of-the-art method. Its low computational load allows routine detection of ~10,000 cells simultaneously with standard two-photon resonant-scanning microscopes. Recordings at this scale promise to reveal the fine structure of activity in large populations of neurons or large populations of subcellular structures such as synaptic boutons
A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data
Deducing the structure of neural circuits is one of the central problems of
modern neuroscience. Recently-introduced calcium fluorescent imaging methods
permit experimentalists to observe network activity in large populations of
neurons, but these techniques provide only indirect observations of neural
spike trains, with limited time resolution and signal quality. In this work we
present a Bayesian approach for inferring neural circuitry given this type of
imaging data. We model the network activity in terms of a collection of coupled
hidden Markov chains, with each chain corresponding to a single neuron in the
network and the coupling between the chains reflecting the network's
connectivity matrix. We derive a Monte Carlo Expectation--Maximization
algorithm for fitting the model parameters; to obtain the sufficient statistics
in a computationally-efficient manner, we introduce a specialized
blockwise-Gibbs algorithm for sampling from the joint activity of all observed
neurons given the observed fluorescence data. We perform large-scale
simulations of randomly connected neuronal networks with biophysically
realistic parameters and find that the proposed methods can accurately infer
the connectivity in these networks given reasonable experimental and
computational constraints. In addition, the estimation accuracy may be improved
significantly by incorporating prior knowledge about the sparseness of
connectivity in the network, via standard L penalization methods.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS303 the Annals of
  Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
  Mathematical Statistics (http://www.imstat.org
- …
