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Abstract
Objective. Inferring the times of sequences of action potentials (APs) (spike trains) from
neurophysiological data is a key problem in computational neuroscience. The detection of APs
from two-photon imaging of calcium signals offers certain advantages over traditional
electrophysiological approaches, as up to thousands of spatially and immunohistochemically
defined neurons can be recorded simultaneously. However, due to noise, dye buffering and the
limited sampling rates in common microscopy configurations, accurate detection of APs from
calcium time series has proved to be a difficult problem. Approach. Here we introduce a novel
approach to the problem making use of finite rate of innovation (FRI) theory (Vetterli et al
2002 IEEE Trans. Signal Process. 50 1417–28). For calcium transients well fit by a single
exponential, the problem is reduced to reconstructing a stream of decaying exponentials.
Signals made of a combination of exponentially decaying functions with different onset times
are a subclass of FRI signals, for which much theory has recently been developed by the signal
processing community. Main results. We demonstrate for the first time the use of FRI theory to
retrieve the timing of APs from calcium transient time series. The final algorithm is fast,
non-iterative and parallelizable. Spike inference can be performed in real-time for a population
of neurons and does not require any training phase or learning to initialize parameters.
Significance. The algorithm has been tested with both real data (obtained by simultaneous
electrophysiology and multiphoton imaging of calcium signals in cerebellar Purkinje cell
dendrites), and surrogate data, and outperforms several recently proposed methods for spike
train inference from calcium imaging data.

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding how information processing occurs in neural
circuits is one of the principal problems of systems
neuroscience. Information is encoded in the firing of action
potentials (APs, or spikes) by individual neurons, and

Content from this work may be used under the terms of
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title of the work, journal citation and DOI.

information processing involves the coordination of AP firing
by large populations of neurons organized into neural circuits.
To understand neural information processing, we thus must
monitor the activity of neural circuits at a spatial resolution
sufficient to resolve many individual neurons, and a temporal
resolution sufficient to resolve individual APs on individual
experimental trials. Of the currently available techniques for
conducting neurophysiological experiments, only multiphoton
calcium imaging (Denk et al 1990, 1994, Svoboda et al 1999,
Stosiek et al 2003) and multielectrode array electrophysiology
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(Csicsvari et al 2003, Blanche et al 2005, Du et al 2009) offer
this capability. Of these, only multiphoton calcium imaging
currently allows precise three-dimensional localization of
each individual monitored neuron within the region of tissue
studied, in the intact brain.

In order to monitor cellular activity, neurons must be
labelled with a fluorescent indicator, and a number of
approaches have been used to do this. Single cells can be
labelled by filling the cell with dye during a whole-cell
or intracellular recording (Kitamura et al 2008, Helmchen
et al 1999). Alternatively, populations of neurons can be
simultaneously labelled with acetoxy-methyl (AM) ester
calcium dyes (Stosiek et al 2003), allowing simultaneous
monitoring of AP induced calcium signals in a plane (Ohki
et al 2005) or volume (Göbel and Helmchen 2007) of tissue.
To investigate information processing in neural circuits, it is
necessary to relate these calcium signals to the properties of
the spike trains fired by the neurons, ideally by detecting the
times of occurrence of spikes with single AP resolution. A
number of methods have previously been used to detect spike
trains from calcium imaging data, including thresholding the
first derivative of the calcium signal (Smetters et al 1999),
and the application of template-matching algorithms based on
either fixed exponential (Kerr et al 2005, 2007, Greenberg
et al 2008) or data-derived (Schultz et al 2009, Ozden et al
2008) templates. Machine learning techniques (Sasaki et al
2008) and probabilistic methods based on sequential Monte
Carlo framework (Vogelstein et al 2009) or fast deconvolution
(Vogelstein et al 2010) have also been proposed.

Some broadly used methods such as template matching
or derivative-thresholding have the disadvantage that they do
not deal well with multiple events occurring within a time
period comparable to the sampling interval. Unfortunately,
given that laser-scanning two-photon imaging systems are
largely limited to scan rates of 8–30 Hz when frame-scanning
with sufficient spatial resolution to capture many neurons,
and that neurons in many brain areas have a propensity to
fire spikes in bursts, this is a relatively common occurrence
in neurophysiological calcium signals. Bursts of spikes have
been found to convey information with high reliability in some
sensory systems (Reinagel et al 1999, Gabbiani et al 1996),
and have been suggested to carry distinct sensory signals
(Wang et al 2007). It is thus desirable to develop calcium
transient detection algorithms that accurately detect multiple
spike calcium events. As there is a trade-off between the area
of tissue imaged and signal to noise ratio (SNR) (zooming in
on a region of tissue allows the collection of more photons
per neuron, thus offering better SNR, but limits the number of
neurons that can be studied) and similarly between sampling
rate and the area of tissue that can be imaged, it is desirable
to improve algorithms for the detection of APs from calcium
fluorescence time series.

In this paper we present a novel approach that extends
modern sampling theory based on finite rate of innovation
(FRI) theory. In the absence of noise, the FRI algorithm
perfectly retrieves the locations of APs using a variation of
a fast non-iterative algebraic method called annihilating filter
(a.k.a. Prony’s method). This method reconstructs complex

exponentials in noise from a set of samples. We have combined
this with a novel double consistency sliding window technique
that improves performances in noisy scenarios. To reconstruct
the time series we construct a Toeplitz matrix from the samples.
The key characteristic of this matrix is that, in the noiseless
case, it is rank deficient, and its rank is always equal to
the number of APs in the observation window. We run the
algorithm twice, firstly with a large time window to estimate
the number of spikes by singular value decomposition (SVD),
and secondly, with a time window containing only a small
number of spikes. In both cases, for each position of the
sliding window, the algorithm outputs the locations of the
K spikes assumed within the window. When the estimate of
K is correct, the retrieved locations are stable among different
sliding windows, and when incorrect, unstable. We construct a
joint histogram of the retrieved locations with the two different
window sizes. The final spike time estimates are obtained from
histogram peaks, corresponding to consistent positions among
different windows.

The proposed algorithm is robust in high noise scenarios,
and fast enough to allow real-time spike train inference for tens
of neurons. We show that for surrogate data with a temporal
resolution of 27 Hz and a SNR of 10 dB the algorithm presents
a spike detection rate above 95% with a false-positive rate
below 0.02 Hz. Moreover, this algorithm is able to retrieve
the spike locations with a precision higher than the temporal
resolution of the acquired data.

2. Methods

2.1. Experimental methods

The data used in this study, and the experimental methods
used to collect them, have been previously described (Schultz
et al 2009). Briefly, Sprague-Dawley rats (P18–P29) were
anaesthetized with urethane (1.2 g kg−1) or with ketamine
(50 mg kg−1) / xylazine (5 mg kg−1). A craniotomy was
made over area Crus IIa of the cerebellum, filled with 1.5–
2% agarose in Ringer’s solution, and a coverslip clamped
above the agarose to suppress brain movement, while leaving
a window open for microelectrode access. A micropipette
was inserted to a depth of around 100–200 μm below
the pia mater, and AM-ester calcium dye (Oregon Green
BAPTA-1 AM) pressure-ejected. Imaging was performed
from 30 min following dye ejection, using a two-photon
laser scanning microscope (Prairie Technologies). A pulsed
Titanium:Sapphire laser was used for excitation, operating at
810 nm (MaiTai, SpectraPhysics) with <100 fs pulse width
and 80 MHz repetition rate, and focused using a 40×, 0.8
Numerical Aperture objective lens (Olympus).

Image frames were acquired using ScanImage software
(Pologruto et al 2003) for MATLAB (MathWorks). Raster
lines making up each frame were of 2 or 2.3 ms duration,
resulting in frame rates of 7–16 Hz. For each region imaged,
a high resolution reference image was first acquired (512 ×
512 pixels, average of five frames), followed by movies at
256 × 64 or 256 × 32 pixel resolution. Fluorescence time
series for each neuron were obtained by defining regions of
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Figure 1. Simultaneous multiphoton calcium imaging with electrophysiology. (a) Maximum intensity projection showing juxtacellular
recording from a Purkinje cell dendrite. The tissue was loaded with Oregon Green BAPTA-1 AM calcium indicator dye (green), and the
pipette filled with Alex 594 (red) to aid visualization during targeted recording. (b) Imaged location, corresponding to grey horizontal line in
(a). (c) Mask showing region of interest for the recorded Purkinje cell. (d) Simultaneous acquisition of fluorescence time series (shown
unfiltered) and dendritically recorded complex spikes (CS), showing CS-driven calcium transients.

interest (ROIs) using a combination of human operator and
spatial independent component analysis (Schultz et al 2009,
Reidl et al 2007), and for each time bin, averaging the values
of each pixel within the ROI.

To validate our event detection algorithms, we
simultaneously performed targeted extracellular recordings
from imaged neurons. Patch micropipettes (∼4 M�) were
filled with artificial cerebrospinal fluid (ACSF), together with
Alexa 594 to aid visualization of the pipette. The pipette was
navigated until the tip was adjacent to a Purkinje cell soma
or dendrites and CS could be observed with high SNR. We
emphasize that we are using two-photon targeted (visualized)
juxtacellular recording, using a patch-pipette filled with dye.
Using this technique, we can observe that the pipette is attached
to a cell in which fluorescence changes are observed for each
AP, meaning that there is no ambiguity concerning which
cell is being recorded from. Electrophysiological and imaging
data were then simultaneously acquired from the same neuron
(figure 1).

2.2. Mathematical model

At time t we consider the fluorescence measurement for a
given ROI to be proportional to the calcium concentration
plus additive Gaussian noise (Vogelstein et al 2009):

Ft = α[Ca2+]t + β + εt, (2.1)

where [Ca2+]t is the intracellular calcium concentration at time
t, constant β represents the baseline calcium concentration
of a particular cell and εt the noise at time t. The noise
is independently and identically distributed according to a
normal distribution with zero mean and σ 2 variance.

The signal that we will consider is the normalized
fluorescence

�Ft/F0 = Ft − F0

F0
, (2.2)

abbreviated as �F/F . F0 is the average background pre-
stimulus fluorescence.

To model mathematically the calcium dynamics [Ca2+]t ,
some assumptions have to be made (Vogelstein et al
2009). We assume that when a neuron is activated, the
calcium concentration jumps instantaneously, and each jump
has the same amplitude A. The concentration then decays
exponentially with time constant τ , to a baseline concentration.
The one-dimensional fluorescence signal can therefore be
characterized by convolving the spike train with a decaying
exponential and adding noise:

�F/F = A
∑

k

e−(t−tk )/τ u(t − tk) + εt

= A
∑

k

δ(t − tk) ∗ e−t/τ u(t) + εt, (2.3)

where the index k represents different spikes, the different tk
their occurrence times and u(t) the unit step function. Hence,
the goal of the spike detection algorithm is to obtain the
values tk.

2.3. Spike detection

Our spike detection algorithm is based on connecting the
calcium transient estimation problem to the theory of FRI
signals. We therefore first provide an overview of this theory
and then present our spike detection method.

2.3.1. Overview of FRI theory. FRI theory applies to specific
classes of signals which are completely specified by a finite
number of free parameters. The goal of FRI algorithms is
to reconstruct a signal that best fit the model given the
available measurements. This is achieved by building specific
matrices whose singular values and singular vectors provide
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Figure 2. Filtering and sampling.

the information necessary to retrieve the free parameters of the
signals. Specifically, the canonical expression of a signal with
FRI is given by:

x(t) =
∑
k∈Z

ak g(t − tk). (2.4)

If the function g(t) is known, the signal x(t) is completely
determined by the coefficients ak and the shifts tk, these are
the free parameters. Introducing a counting function Cx(ta, tb)
that counts the free parameters or degrees of freedom of x(t)
over the time interval [ta, tb], the rate of innovation is defined
as (Vetterli et al 2002)

ρ = lim
τ→∞

1

τ
Cx

(
−τ

2
,
τ

2

)
. (2.5)

We can then define FRI signals as those with a finite ρ. A
typical example of such signals is a stream of K Diracs,
x(t) = ∑K

k=1 ak δ(t − tk). This signal is not-bandlimited,
but we only need to know the K pair of coefficients (ak, tk)
to perfectly reconstruct it. Classical sampling theory does
not allow sampling and perfect reconstruction of this type
of signal. However, recent work in FRI theory has shown that
this is possible (Vetterli et al 2002). In the sequel we show how
it is possible to acquire the signal x(t) = ∑K

k=1 ak δ(t − tk)
and perfectly reconstruct it from a finite set of samples.

Acquisition devices are usually modelled as a filtering
stage followed by a sampling stage as illustrated in figure 2.
Filtering signal x(t) with h(t) = ψ(−t/T ) and retrieving
samples at instants of time t = n T is equivalent to computing
the inner product between x(t) and ψ(t/T − n). Specifically,
the filtered signal is given by

y(t) = x(t) ∗ h(t)

=
∫ +∞

−∞
x(τ )h(t − τ ) dτ

=
∫ +∞

−∞
x(τ )ψ

(
− t − τ

T

)
dτ. (2.6)

Moreover, sampling y(t) at regular intervals of time
t = n T leads to

yn = y(t)|t=nT

=
∫ +∞

−∞
x(τ )ψ

( τ

T
− n

)
dτ

=
〈
x(t), ψ

(
t

T
− n

)〉
. (2.7)

Hence, samples yn correspond to the projection of x(t)
onto the set of functions {ψ(t/T − n)}n∈Z.

The function ψ(t) is called sampling kernel and has to
satisfy specific properties to be able to perfectly reconstruct
the signal x(t). Exponential reproducing kernels satisfy the
required conditions (Dragotti et al 2007). This is a family of

kernels that together with its shifted versions can reproduce
exponentials of the form eαmt :∑

n∈Z

dm,nψ(t − n) = eαmt, (2.8)

where m = 0, 1, . . . , P. This expression is satisfied for a
proper choice of coefficients dm,n. The computation of these
coefficients is detailed in appendix A.1. The parameters αm can
be chosen arbitrarily. However we require αm = α0 + mλ in
order to be able to use the annihilating filter method described
later on. Moreover, we choose them to be αm = j π

P (m − P
2 ).

They are selected to be purely imaginary because they are more
robust against noise and in complex conjugate pairs in order to
have a real valued kernel ψ(t). E-splines are a type of functions
that are able to reproduce exponentials and have the advantage
of being of compact support (Urigüen et al 2011). An E-spline
of order P can reproduce P + 1 different exponentials as in
(2.8). Figure 3 shows an example with P = 1. This E-spline is
able to reproduce two different exponentials.

Given the samples yn, we now want to retrieve the degrees
of freedom {(ak, tk)}K

k=1. If we combine these samples with
coefficients dm,n, we obtain∑

n

dm,n yn =
∑

n

dm,n 〈x(t), ψ(t − n)〉

=
〈

x(t),
∑

n

dm,n ψ(t − n)

︸ ︷︷ ︸
=eαmt

〉

=
∫ +∞

−∞
x(t) eαmt dt = sm, (2.9)

where m = 0, 1, . . . , P. The new samples sm are the
exponential moments of the signal x(t). In the particular case
where the input signal is a stream of Diracs, and αm can
be written as αm = α0 + mλ, the exponential moments can
be expressed as a sum of exponentials (see appendix A.2):

sm =
K∑

k=1

bk um
k , (2.10)

where bk = ak eα0tk and uk = eλtk . We are now faced with the
problem of having to retrieve bk and uk from the sequence sm.
The problem is linear in the parameters bk, but it is nonlinear
in the parameters uk. Therefore the difficulty is in finding
the nonlinear terms. We solve the problem by applying the
annihilating filter method. The annihilating filter is a filter of
length K + 1 with zeros at locations {uk}K

k=1. The z transform
of the impulse response of the filter is thus

H(z) =
K∑

m=0

hmz−m =
K∏

k=1

(1 − ukz−1). (2.11)

This method is based on the observation that if we filter
the sequence sm with a filter with zeros at uk the output is
zero. To convince ourselves of this fact let us assume that
we have a sequence with only one exponential: sm = um

1 .
The corresponding annihilating filter is 1 − u1 z−1. This filter
computes finite differences weighted by u1. The output of the
filter is thus sm − u1sm−1. The sequence sm is cancelled out as
the weight u1 is exactly the rate of growth of the sequence.
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Figure 3. First order E-spline that reproduces two different exponential functions. (a) First order E-spline. (b) Reproduction of e−t/2.
(c) Reproduction of e+t/2.
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Figure 4. The annihilating filter is a cascaded interconnection of unitary filters with zeros at uk. Any signal formed by a linear combination
of the exponential sequences un

k is filtered out.

If we have more than one exponential we can annihilate
the signal by cascading unitary filters where each of them
cancels out one exponential. Figure 4 illustrates this concept.
The z transform of filters connected in series is the product
of their transfer functions. Thus the transfer function of the
annihilating filter is

H(z) =
K∑

m=0

hmz−m =
K∏

k=1

(1 − ukz−1) (2.12)

and we have that

hm ∗ sm =
K∑

i=0

hism−i

=
K∑

i=0

hi

K∑
k=1

bkum−i
k

=
K∑

k=1

bkum
k

K∑
i=0

hiu
−i
k︸ ︷︷ ︸

=H(uk )

= 0, (2.13)

since H(z)|z=uk = ∑K
m=0 hmu−m

k = 0. If 2K + 1 samples of
sm are available, the convolution hm ∗ sm can be expressed in
matrix form as Sh = 0:⎛

⎜⎝
sK . . . s0
...

. . .
...

s2K . . . sK

⎞
⎟⎠

⎛
⎜⎝

h0
...

hK

⎞
⎟⎠ =

⎛
⎜⎝

0
...
0

⎞
⎟⎠. (2.14)

The matrix S is rank deficient with rank K; the system is
therefore overdetermined and the solution is not unique. If
we impose h0 = 1, the system has a unique solution. Once
h has been found, the locations tk are directly determined
from the roots of the polynomial H(z) as uk = eλtk , where
λ is the parameter of the coefficients αm = α0 + mλ. From
(2.14) and imposing h0 = 1, it can be seen that we need at
least 2K samples sm. This imposes a lower limit to the order

P of the E-spline as we compute the measurements sm for
m = 0, 1, . . . , P, where P is its order.

Retrieval of the parameters of a sum of exponentials in
noise in the form given in (2.10) is a recurrent problem in
spectral estimation. We refer the reader to Stoica and Moses
(2005) for further details.

The previous theory has been presented for continuous-
time signals and an analogue sampling kernel. However it can
easily be extended to discrete-time signals. We can assume that
the independent variable t of the input signal x(t) is discrete.
For a given temporal resolution Tres, we define discrete time
values as t = n Tres, where n ∈ Z. The filter is then replaced by
a discretized version of ψ(t) and the convolution is computed
as a summation instead of an integral. Moreover, if we set the
sampling period at the output of the filter to be the temporal
resolution, that is T = Tres, the sampling stage after the filter
can be omitted, as the filter’s output y(t) is a discrete sequence
that directly corresponds to samples yn. The T = Tres condition
also applies to the scaling factor of the kernel which becomes
ψ(t/Tres).

2.3.2. Data processing. Based on the above framework,
we now develop a method for spike detection in calcium
transient signals. Recall that the input signal can be
expressed as a stream of decaying exponentials. Moreover,
we assume that there is a finite number K of spikes within
the observation period. Therefore the noiseless calcium
concentration variation, denoted c(t), can be expressed as

c(t) = A
K∑

k=1

e−α(t−tk ) u(t − tk)

=
K∑

k=1

δ(t − tk)︸ ︷︷ ︸
x(t)

∗ A e−αt u(t)︸ ︷︷ ︸
ρα(t)

= x(t) ∗ ρα(t). (2.15)

5
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Figure 5. Filtering process of the measured signal.

Here the variable t is discrete. The detection process requires
filtering the measured signal. The filter has an impulse response
h(t) = ϕ(−t) where ϕ(t) is able to reproduce exponentials as
in (2.8), specifically∑

n∈Z

cm,n ϕ(t − n) = eαm t . (2.16)

The signal c(t) is filtered with h(t) = ϕ(−t). The output
of the filter h(t) are the samples yn that correspond to the
inner product between c(t) and shifted versions of the kernel:
yn = 〈c(t), ϕ(t − n)〉. Samples yn can also be expressed as
yn = 〈x(t), ρα(−t) ∗ ϕ(t − n)〉 (see appendix A.3). One of
the key points of the previously described FRI framework is
that the filtered and sampled stream of Diracs is combined
with the dm,n coefficients from (2.8) to obtain the sum of
exponentials given in (2.10). It will become clearer in what
follows, that despite the fluorescence signal being composed
of a stream of decaying exponentials, this first filtering stage
with the exponential reproducing function ϕ(t) will allow us
to turn the problem into retrieving the locations of a stream of
Diracs.

The next step of the algorithm is to compute finite
weighted differences of samples yn in order to obtain new
samples zn. This is a second filtering stage with a filter
with transfer function G(z) = 1 − e−αT z−1. These steps
are illustrated in figure 5. Filtering signal c(t) with ϕ(−t)
and computing samples zn = yn − yn−1 e−αT is analogous
to filtering the stream of Diracs x(t) with a different kernel
ψ(t) (see appendix A.4). At this stage, the problem has been
turned into a sampling process of a stream of Diracs. This new
kernel, ψ(t), is still able to reproduce exponentials (Unser
and Blu 2005). That is, there exists coefficients dm,n such that∑

n dm,n ψ(t − n) = eαm t .
The problem of estimating the calcium transients and the

problem of reconstructing an FRI signal are now equivalent.
In fact, we now have a set of samples zn = 〈x(t), ψ(t −
n)〉 which are equivalent to those that we would obtain
if we were sampling the stream of Diracs x(t) with the
exponential reproducing kernel ψ(t). We can therefore apply
FRI techniques to retrieve the location of the Diracs and, as
highlighted in (2.15), those correspond exactly to the activation
times of the APs. We summarize this inference method in
algorithm 1.

2.3.3. Spike inference in practice. Real data presents two
main issues. Firstly, in the presence of noise, the matrix S
from (2.14) is not rank deficient. And secondly, the number of
spikes (K) within a time interval is unknown.

In the noiseless case, the matrix S has rank K. The SVD
of this matrix has therefore only K non-zero singular values.
When noise is added to the input signal, the matrix S becomes
full rank and if we do not have prior knowledge of K, estimating
its value becomes part of the problem. In a low noise scenario
and when K is not zero, K can be estimated from the singular
values of S. In this case, the contribution of the signal in the
singular value of S is more important than the contribution of
the noise, and a clear separation can be established to estimate
the number of singular values that are due to the signal.

Another effect of the noise is that equation (2.14) is not
satisfied exactly. We have followed two different approaches
to overcome this situation. The first approach (Blu et al 2008)
starts with denoising the matrix S with an iterated algorithm
(Cadzow 1988). The matrix S is Toeplitz by construction,
but is not rank deficient due to the presence of noise. The
iterated algorithm makes the matrix S be of rank K (using the
previously estimated value of K) setting to zero the smallest
singular values. This new matrix S′ has rank K but is not
Toeplitz anymore. A new matrix is built averaging the diagonal
elements of matrix S′. These two steps are repeated until
some stop condition is reached. The next step is to solve
equation (2.14). This is done computing the total least squares
solution that minimizes ‖Sh‖2 subject to ‖h‖2 = 1. The second
approach is based on the matrix pencil method (Hua and
Sarkar 1990) which is in essence based on the same principle
that is used in the ESPRIT algorithm (Paulraj et al 1985) for
the estimation of directions of arrival of signals in arrays of
antennas. This approach has already been successfully used in
the FRI framework (Maravić and Vetterli 2005). This method
is based on the particular structure of the matrix S, which is
Toeplitz and each element is given by a sum of exponentials
as shown in (2.10). Let S0 be the matrix constructed from
S by dropping the last row and S1 the matrix constructed
from S by dropping the first row. It can be shown that in
the matrix pencil S0 − μS1 the parameters {uk}K

k=1 are rank
reducing numbers, that is, the matrix S0 − μS1 has rank
K − 1 for μ = uk and rank K otherwise. The parameters
{uk}K

k=1 are thus given by the eigenvalues of the generalized
eigenvalue problem (S0 − μS1)v = 0. Both approaches lead
to similar performances whilst the second is computationally
more efficient.

Correct estimation of the number of spikes within the time
window where we are searching for spikes is crucial to obtain
good performance. The previously described approach, where

Algorithm 1. FRI spike train inference (noiseless scenario)

Input: c(t): calcium concentration, K: number of spikes
Output: {tk}K

k=1: spike locations
1: Filter with exponential reproducing kernel: yn = 〈c(t), ϕ(t − n)〉
2: Compute weighted finite differences: zn = yn − yn−1 e−αT

3: Obtain new measurements: sm = ∑
n dm,n zn

4: Compute the annihilating filter: hm ∗ sm = 0
5: Retrieve locations from roots of the annihilating filter: H(z) = ∑K

m=0 hm z−m = ∏K
k=1(1 − uk z−1), where uk = eλtk

6
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Figure 6. Fluorescence signal processing with a sliding window. For each time interval, the number of spikes within that interval is first
estimated and then the location of each spike is retrieved.

K is estimated from the singular values of the matrix S, has
two main issues: firstly, we never detect the K = 0 case, and
secondly, in very noisy scenarios (low SNR), the estimation is
not very accurate. To overcome these inaccuracies we perform
a double consistency analysis. In order to extract the spikes
from a long data stream, the signal is sequentially analysed
with a sliding window. For each position of the window, we
first estimate the number of spikes within the window, and we
then extract the locations of the corresponding spikes. Figure 6
illustrates this procedure. If the window has size �t and the
window progresses by steps of tstep, the time interval processed
within the ith window is

[t0 + (i − 1) tstep, t0 + (i − 1) tstep + �t), (2.17)

where t0 is the instant of time of the first sample of the data
stream. We select tstep to be equal to the temporal resolution
of the data, so the window advances sample by sample.
Consecutive windows, importantly, overlap to guarantee that a
spike is detected among different windows. Figure 7 illustrates
this sequential processing of a real fluorescence sequence.
In figures 7(a) and (b) the red dots represent the retrieved
locations for different positions of the sliding windows; the
vertical axis represents the index of the window, and the
horizontal axis the time location of the retrieved spikes.
Figure 7(a) corresponds to a window size of 32 points and
figure 7(b) to a window size of 8 points. The blue lines
represent the locations of the real spikes, this is the ground
truth data. When a spike is detected among different windows,

we can see that the red dots are aligned vertically because
different windows output the same location.

The double consistency approach consists in running the
algorithm twice following two different strategies in each
execution. First, with a sufficiently large time window (32
points of the input signal) we estimate the number of spikes
from the singular values of the matrix S. Second, with
a sufficiently small window (8 points of the input signal)
we assume that we always have a single spike within this
observation window. In both cases, for each position of the
sliding window, the algorithm outputs the locations of the
spikes assumed to be within that window. When the retrieved
locations correspond to real spikes, the locations we retrieve
are stable among the different positions of the window that
capture these spikes, but when the locations correspond to
noise they are not stable. We construct a joint histogram of
the retrieved locations with the two different window sizes.
This is shown in figure 7(c). The locations of the real spikes
are estimated from the peaks of the histogram. These peaks
correspond to positions that are consistent among different
windows. Figure 7(d) shows the fluorescence data with the
real and the detected spikes. The algorithm is summarized in
algorithm 2.

2.4. Generating surrogate data

We generated surrogate data with similar properties to the
experimental data, in order to investigate the changes in

Algorithm 2. FRI spike train inference (noisy scenario)

Input: c(tn), where n = i, . . . , i + N − 1: windowed calcium sequence (N = 32 or 8), Optional parameter K: number of spikes
Output: {tk}K

k=1: spike locations
1: Filter with exponential reproducing kernel: yn = 〈c(t), ϕ(t − n)〉
2: Compute weighted finite differences: zn = yn − yn−1 e−αT

3: Obtain new measurements: sm = ∑
n dm,n zn

4: Create Toeplitz matrix S from samples sm

5: if K is not fixed then
6: Compute normalized singular values of S
7: K is the number of singular values greater than 0.3
8: end if
9: Create matrix S0 from S by dropping first row

10: Create matrix S1 from S by dropping last row
11: Retrieve {uk}K

k=1 from the eigenvalues of the generalized eigenvalue problem S0 − μS1

12: Obtain {tk}K
k=1 from uk = eλtk

7
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Figure 7. Double consistency spike search with real data. (a) and (b) show the detected locations in red and the locations of the original
spikes in blue for two different window sizes. In (a) the algorithm estimates the number of spikes within the sliding window (window size 32
samples). In (b) the algorithm assumes K = 1 for each position of the sliding window (window size 8 samples). (c) shows the joint
histogram of the detected locations. (d) shows the fluorescence signal in black with the original spikes in blue and the detected spikes in red.

performance of the spike detection algorithm in terms of
parameters such as data SNR and the sampling frequency.
We assume that the spike occurrence follows a Poisson

distribution with parameter λ spikes/s. Experimental data
presents occurrences between 0.45 and 0.5 spikes per second.
The probability of having k spikes in the interval considered
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Figure 8. Surrogate data. Temporal resolution Tres = 147.2 ms and SNR = 10 dB.

in parameter λ (one second) is given by the probability mass
function of the Poisson distribution:

fλ(k) = λke−λ

k!
. (2.18)

To generate a spike train for a time interval L we divide
this interval in N slots. Each slot corresponds to a time interval
of �t = L

N seconds. The λ′ parameter that corresponds to
this new time interval is λ′ = λ · �t. We then create a vector
k = (k1, . . . , kN ) of size 1 × N where each ki is a realization
of the independent random variables Ki ∼ Pois(λ′). The ith
element of this vector, ki, gives the number of spikes that
occurred during the ith time slot. We then have to generate
the precise instant of time when the spike occurred. For a
given time slot, we generate the ki spike locations according to
a uniform distribution. The total number of spikes in the
time interval L is K = ∑N

i=1 ki. Once we have generated
the locations of the K spikes (tk)K

k=1 the waveform given by
the exponential decaying model is:

c(t) = A
K∑

k=1

e−α(t−tk ) u(t − tk) (2.19)

where α = 1/τ . We then generate the simulated fluorescence
sequence sampling equation (2.19) at instants t = n Tres for
a temporal resolution of Tres seconds. The data sequence
is slightly smoothed before sampling in order to have a
differentiable function. We can then add white Gaussian noise
to satisfy a certain SNR. The SNR is computed as the ratio
between the power of the signal and the power of the noise,
expressed in the logarithmic decibel scale. Figure 8 shows an
example of generated data with a SNR of 10 dB.

2.5. Real-time processing

The algorithm is fast enough to perform real-time spike
inference. The most demanding stages in terms of computation
requirements are the estimation of the number of spikes and
the retrieval of the locations for each position of the sliding
windows. The joint histogram’s peak detection has a negligible
complexity when compared to the previous stages. For each
new data sample the algorithm has to perform the number
of spikes estimation and locations retrieval for the 32 points
and 8 points windows. Since previous locations are stored in
memory, the histogram can be computed sequentially.

Performance measurements have been done for the current
MATLAB implementation using a commercial laptop (tested

on a 2.5 GHz Intel Core i5 CPU). In our setup, the 32
points window takes on average (value obtained averaging
the execution time of 1000 windows) 1.25 ms to perform the
number of spikes estimation and location retrieval, and the
8 points window takes 0.49 ms. Therefore, when a new data
sample is available the algorithm takes 1.74 ms to process it.
The sampling period is 147.2 ms, the current implementation
can thus process up to 84 data streams in parallel. The
algorithm requires the samples from a whole window before
being able to output a location. Therefore the output has a
maximum delay of 32 samples×147. 2 ms/sample = 4.71 s.

3. Results

In this section we present the performance of the spike
detection algorithm with real and surrogate data. The
electrophysiological measurements give us a ground truth for
the spiking activity of the monitored neuron which allows
measuring the performance of the algorithm with real data.
A detected spike is considered to correspond to a real spike
if the difference between the real location and the estimated
location is smaller than or equal to a threshold. We set this
threshold to be equal to the temporal resolution of the data,
Tres. If we denote by tk the real location of a spike and t̃ j an
estimated location, we consider that the real spike has been
detected if t̃ j ∈ [tk − Tres, tk + Tres]. When a spike is assumed
to correspond to a real spike, we can measure the error on the
estimated location. From this error measurement we obtain a
mean square error of the overall algorithm.

A limitation of the real data is the temporal resolution,
which is imposed by the frame rate of the calcium imaging
dataset. With the surrogate data we can control this resolution
when we generate the data stream to measure the impact of
this parameter to the algorithm’s performance.

3.1. Real data

The real data is a data stream of 133 s with a temporal
resolution Tres = 0.147 s. Hence there are 903 samples. This
data stream contains 62 spikes at a rate of 0.466 Hz.

The sliding window algorithm is performed twice, first
with a big window of 32 samples estimating K from the
estimated rank of the S matrix (thresholding of the singular
values), and second with a small window of eight samples and
a fixed K = 1. The spikes are detected from the resulting

9
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5 10 15 20 25 30
75

80

85

90

95

100

SNR (dB)

%

T
res

 = 147.2ms

T
res

 = 73.6ms

T
res

 = 36.8ms

(a) Success rate.

5 10 15 20 25 30
0

0.05

0.1

SNR (dB)

H
z

T
res

 = 147.2ms

T
res

 = 73.6ms

T
res

 = 36.8ms

(b) False positives.

5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

SNR (dB)

se
co

nd
s

T
res

 = 147.2ms

T
res

 = 73.6ms

T
res

 = 36.8ms

(c) Locations precision.

Figure 9. Algorithm’s performance measurement with surrogate data. The surrogate data contains 1000 spikes in a time interval of 2000 s.
For each noise level, the experiment has been repeated for 100 different realizations of the noise. (a) The success rate is measured as the
percentage of true spikes that have been correctly detected. (b) False positives are given as number of false positives per second (Hz). (c)
Standard deviation of the retrieved locations with respect to the true locations.

histogram of the union of the locations retrieved in both
iterations. The algorithm correctly detects 83.9% of the spikes.
The standard deviation of the locations is 0.0503 s. There are
a total of 9 false positives, this corresponds to a false positive
rate of 0.0598 Hz or 1.1% if measured as the rate between
false positives and total negative samples.

3.2. Surrogate data

The real data presents a spike rate of 0.466 spikes per second.
We have generated surrogate data assuming that the spike
occurrence follows a Poisson distribution with a parameter
λ = 0.5 spikes/s and a total number of 1000 spikes. The
noiseless calcium concentration signal have been generated
once for a given spike distribution and with three different
temporal resolutions. To analyse the performance variation for
different levels of noise we have run the algorithm over 100
different realizations of noise for each level of SNR. Figure 9
summarizes the obtained performances.

From figure 9 it can be seen that the success rate of
the algorithm strongly depends on the temporal resolution of
the data. The higher the temporal resolution, the better the
spike detection rate. The real data we have analysed presents
a low temporal resolution because of the low frame rate of the
calcium images ( 1

0.147 s = 6.8 Hz), but recent publications
(Sadovsky et al 2011, Katona et al 2012) show that the
acquisition techniques are improving, with in some situations
frame rates up to 125 Hz now available. At these frame
rates, our algorithm presents success rates above 95%. The
performances of the detection algorithm are not particularly
influenced by the noise for SNRs above 10 dB, and deteriorate
slightly for lower SNRs. Increasing temporal resolution has
a minor drawback, the amount of false positives slightly
increases. However, the false positive rate is very low (about
15 false positives for a stream of 2000 s represents a rate of
false positives below 0.01 Hz)3.

3 In the aid of reproducible research our code is available from the authors
on request.

3.3. Comparison with existing methods

Various methods for spike inference from two-photon imaging
have been presented in recent years, but to the best of our
knowledge, none of them achieve these performances for real-
time processing. Greenberg et al (2008) present a method
based on finding a least-square solution to fit the observed
fluorescence signal. With real data similar to ours, temporal
resolution of 96 ms and neural activity with firing rate of
0.44 Hz, they obtain higher detection rates, 95% detection
of electrically confirmed AP with a false-positive rate of
0.012 Hz. However, this method is very slow and is not suitable
for real-time processing. It also has to be noted that this
data was acquired from cell bodies and our from dendrites.
Sasaki et al (2008) describe a new approach that combines
principal component analysis and support vector machine.
This method requires a learning phase to tune some parameters.
The results show similar performances in terms of detection
rate, with error rates <10%, but the precision of this method
is lower as only a fraction of the detected spikes are detected
in the correct time frame. Vogelstein et al (2009) present a
sequential Monte Carlo method to infer spike trains. Again,
this method is not suitable for real-time processing due to
its high computational complexity. Vogelstein et al (2010)
describe a fast nonnegative deconvolution filter to infer the
most likely spike train given the fluorescence. The code that
implements this method in MATLAB is publicly available and
we have tested it with our data. The computational complexity
of this method is comparable to ours. The output of this
algorithm is a probability between 0 and 1 of having a spike
in a given time frame. Thresholding this probability vector is
how we decide if the neuron has been activated in a given time
frame. The lower the threshold, the higher the detection rate,
but this also increases the false positive rate.

Figure 10 presents receiver operating characteristic (ROC)
curves in order to compare our algorithm (FRI) and the fast
nonnegative deconvolution technique with surrogate data. We
have also included simulation results for two other standard
algorithms, derivative-thresholding and filter and thresholding.
The latter method filters the fluorescence sequence with a
derivative of a Gaussian filter in order to smooth the noise
and detect spikes. All four methods have a thresholding stage
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(c) Surrogate fluorescence signal (SNR=15dB).
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Figure 10. Simulations showing FRI algorithm achieving better performances in spike train inference than the fast deconvolution technique
from Vogelstein et al (2010) and different filtering and thresholding approaches. (a) Surrogate data generated with a temporal resolution
Tres = 147.2 ms and SNR = 10 dB. There are total of 1000 spikes with a rate of 0.5 spikes per second. (b) ROC curves comparing FRI (solid
line), fast deconvolution (dashed line), derivative and thresholding (dashed-dotted line) and filtering and thresholding (dotted) techniques.
(c) and (d) present the results of the same experiment in a lower noise scenario (SNR = 15 dB). The x and y axis are unitless as they present
a ratio between true positive or negative samples and obtained positive or negative samples.

to infer the spike train. A lower threshold provides a higher
success rate but with the penalty of having more false positives.
The simulations have been performed with the same spike
train we generated to obtain the performance measurements
in figure 9 and with the same realization of the noise in all
four methods. We present the results for two different levels
of noise. The two axis of the ROC curves are unitless as
they present a ratio between true positive or negative samples
and obtained positive or negative samples. The surrogate data
contains 1000 true spikes and 13 587 samples (2000 s/Tres).
Thus an operating point with a false positive rate of 0.01 and a
true positive rate of 0.9 correctly detects 900 spikes but throws
126 false positives. It can be observed that the FRI algorithm
presents better performances although it has to be noted that
the fast deconvolution algorithm is faster. The time required
to process a 13 600 points stream (which corresponds to the
2000 s stream of surrogate data in figure 10(a)) is around 3.85 s
for the fast deconvolution algorithm and around 23.64 s for the
FRI algorithm.

With real data, FRI achieves a success rate of 83.9% (52
trues spikes correctly detected out of 62) with only nine false
positives. To achieve similar success rates on the same data
with the fast deconvolution method, we obtain more than 100
false positives, this is more false positives than true spikes.
Derivative-thresholding presents more than 200 false positives
for a success rate of 83.9% and filter and threshold more than
110 false positives.

4. Discussion

We have presented a novel spike inference technique based
on FRI theory. Spikes are detected from calcium transients
in fluorescence measurements. To do this, the existing FRI
framework has been extended to a new class of signals that
is formed by a stream of decaying exponentials. The data
obtained in this type of measurements presents low temporal
resolution and is corrupted with noise. To overcome these
limitations we propose a sequential non-iterative algorithm
that is able to detect spikes in real-time. The proposed
algorithm achieves very high success rates with a low number
of false positives. These promising results are a direct
consequence of the fact that the fluorescence sequence can
be parametrized as a signal recoverable in the FRI setup.
FRI guarantees that the recovered signal is within a specific
model, and this strong prior is what makes this algorithm very
effective.

Techniques for spike train inference from two-photon
imaging have begun attracting substantial attention in
recent years due to the promise of being able to monitor
spike trains from large numbers of localized neurons
simultaneously. Improvements in acquisition techniques
and increasing temporal resolution demand efficient spike
inference algorithms to process all this information. Our
algorithm is fast and parallelizable, and is thus well-suited
to this context.

11



J. Neural Eng. 10 (2013) 046017 J Oñativia et al
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Appendix A

A.1. Exponential reproducing kernels and dm,n coefficients
computation

Exponential reproducing kernels are a family of kernels that
together with its shifted versions can reproduce exponentials
of the form eαmt :∑

n∈Z

dm,nψ(t − n) = eαmt, with αm ∈ C (A.1)

for a proper choice of the coefficients dm,n. The coefficients
dm,n are given by

dm,n =
∫ ∞

−∞
eαmtψ̃ (t − n) dt, (A.2)

where ψ̃ (t) is chosen to form with ψ(t) a quasi-biorthonormal
set (Dragotti et al 2007). This includes the particular case
where ψ̃ (t) is the dual of ψ(t), that is, 〈ψ̃ (t −n), ψ(t −m)〉 =
δn,m. From (A.2) we can express dm,n in terms of dm,0

dm,n = eαmn
∫ ∞

−∞
eαmtψ̃ (t) dt = eαmn dm,0. (A.3)

If we plug this expression in (A.1) we can derive an
expression to compute dm,0 for each m = 0, . . . , P:

dm,0 = eαmt∑
n eαmn ψ(t − n)

, m = 0, 1, . . . , P, (A.4)

which is valid for any value of t. Setting t = 0, we have
dm,0 = (

∑
n e−αmn ψ(n))−1. Note that the summation is finite

because ψ(t) is of compact support. For each m we can then
compute dm,n for any n as dm,n = eαmn dm,0.

A.2. Exponential moments of a stream of Diracs

We define the exponential moments of a signal x(t) as

sm =
∫ +∞

−∞
x(t) eαmt dt. (A.5)

If the input signal is a stream of Diracs, x(t) =∑K
k=1 ak δ(t − tk), and the exponent’s parameter can be

expressed as αm = α0 + mλ, the exponential moments are
given by

sm =
∫ +∞

−∞

K∑
k=1

ak δ(t − tk) eαmt dt

=
K∑

k=1

ak eαmtk

=
K∑

k=1

bk um
k , (A.6)

where bk = ak eα0tk and uk = eλtk .

h t

t nT
c t( )

( )
( )

=
y t yn

Figure A1. Filtering process of a stream of decaying exponentials.

A.3. Filtering a stream of decaying exponentials

Let

c(t) = A
K∑

k=1

e−α(t−tk ) u(t − tk)

=
K∑

k=1

δ(t − tk)︸ ︷︷ ︸
x(t)

∗ A e−αt u(t)︸ ︷︷ ︸
ρα(t)

= x(t) ∗ ρα(t). (A.7)

We know from (2.7) that filtering signal c(t) with a
filter with impulse response h(t) = ϕ(−t/T ) and taking
samples at regular intervals t = nT can be expressed as
yn = 〈c(t), ϕ( t

T − n)〉. Replacing c(t) by x(t) ∗ ρα(t) and
denoting with ϕn,T (t) the function ϕ( t

T − n) then leads to:

yn = 〈x(t) ∗ ρα(t), ϕn,T (t)〉
=

∫ +∞

−∞

(∫ +∞

−∞
x(τ ) ρα(t − τ ) dτ

)
ϕn,T (t) dt

(a)=
∫ +∞

−∞
x(τ )

(∫ +∞

−∞
ρα(−ν) ϕn,T (τ − ν) dν

)
︸ ︷︷ ︸

ρα(−τ )∗ϕn,T (τ )

dτ, (A.8)

where (a) follows from a change of variable t − τ = −ν. It is
then clear that

yn = 〈x(t), ρα(−t) ∗ ϕn,T (t)〉, (A.9)

which is also illustrated in figure A1.

A.4. Computing weighted finite differences of the samples

We now show that filtering signal c(t) = x(t) ∗ ρα(t) =∑K
k=1 δ(t − tk) ∗ A e−αt u(t) with ϕ(−t/T ) and computing

samples zn = yn − yn−1 e−αT is analogous to sampling the
stream of Diracs x(t) with a different kernel ψ(−t/T ). The
weighted differences can be written as

zn = 〈x(t), ρα(−t) ∗ ϕ(t/T − n)

−e−αT ρα(−t) ∗ ϕ(t/T − (n − 1))〉, (A.10)

since the inner product is linear and samples yn can be
expressed as yn = 〈x(t), ρα(t) ∗ ϕ(t/T − n)〉. Applying
Parseval’s theorem, and considering that F{ϕ(t/T − n)} =
|T | ϕ̂(wT ) e− jwnT we can also write

zn = 1

2π
〈x̂(w), ρ̂α(−w) |T | ϕ̂(wT ) e− jwnT [1 − e−αT e jwT ]〉.

(A.11)

ρ̂α(−w) is the Fourier transform of the time reversed
decaying exponential. SinceF{e−αt u(t)} = 1

α+ jw , ρ̂α(−w) =
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F{eαt u(−t)} = 1
α− jw . If we replace this in the above

expression we obtain:

zn = 1

2π

〈
x̂(w),

1 − e−(α− jw)T

α − jw
|T | ϕ̂(wT ) e− jwnT

〉
. (A.12)

In the second part of this inner product we can recognize
an expression which is similar to the Fourier transform of
a first order E-Spline, β̂α(w) = 1−eα− jw

jw−α
. If we consider

β̂−αT (−wT ) = 1−e−αT+ jwT

T (α− jw)
it follows that

zn = 1

2π
〈x̂(w), T β̂−αT (−wT ) |T | ϕ̂(wT ) e− jwnT 〉. (A.13)

Applying again Parseval’s theorem yields

zn = 〈x(t), βαT (−t/T ) ∗ ϕ(t/T − n)〉. (A.14)

If we name ψ(t) = βαT (−t) ∗ ϕ(t), the expression in (A.14)
shows that samples zn are equivalent to sampling the stream of
Diracs x(t) with ψ(−t/T ).
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and Häusser M 2009 Spatial pattern coding of sensory
information by climbing fiber-evoked calcium signals in
networks of neighboring cerebellar Purkinje cells J. Neurosci.
29 8005–15

Smetters D, Majewska A and Yuste R 1999 Detecting action
potentials in neuronal populations with calcium imaging
Methods 18 215–21

Stoica P and Moses R 2005 Spectral Analysis of Signals 1st edn
(Upper Saddle River, NJ: Prentice-Hall)

Stosiek C, Garaschuk O, Holthoff K and Konnerth A 2003 In vivo
two-photon calcium imaging of neuronal networks Proc. Natl
Acad. Sci. USA 100 7319–24

Svoboda K, Helmchen F, Denk W and Tank D W 1999 Spread of
dendritic excitation in layer 2/3 pyramidal neurons in rat barrel
cortex in vivo Nature Neurosci. 2 65–73

Unser M and Blu T 2005 Cardinal exponential splines: Part
I—theory and filtering algorithms IEEE Trans. Signal Process.
53 1425–38
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