5,940 research outputs found

    PointMap: A real-time memory-based learning system with on-line and post-training pruning

    Full text link
    Also published in the International Journal of Hybrid Intelligent Systems, Volume 1, January, 2004A memory-based learning system called PointMap is a simple and computationally efficient extension of Condensed Nearest Neighbor that allows the user to limit the number of exemplars stored during incremental learning. PointMap evaluates the information value of coding nodes during training, and uses this index to prune uninformative nodes either on-line or after training. These pruning methods allow the user to control both a priori code size and sensitivity to detail in the training data, as well as to determine the code size necessary for accurate performance on a given data set. Coding and pruning computations are local in space, with only the nearest coded neighbor available for comparison with the input; and in time, with only the current input available during coding. Pruning helps solve common problems of traditional memory-based learning systems: large memory requirements, their accompanying slow on-line computations, and sensitivity to noise. PointMap copes with the curse of dimensionality by considering multiple nearest neighbors during testing without increasing the complexity of the training process or the stored code. The performance of PointMap is compared to that of a group of sixteen nearest-neighbor systems on benchmark problems.This research was supported by grants from the Air Force Office of Scientific Research (AFOSR F49620-98-l-0108, F49620-0l-l-0397, and F49620-0l-l-0423) and the Office of Naval Research (ONR N00014-0l-l-0624)

    k-Nearest Neighbour Classifiers: 2nd Edition (with Python examples)

    Get PDF
    Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier -- classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance because issues of poor run-time performance is not such a problem these days with the computational power that is available. This paper presents an overview of techniques for Nearest Neighbour classification focusing on; mechanisms for assessing similarity (distance), computational issues in identifying nearest neighbours and mechanisms for reducing the dimension of the data. This paper is the second edition of a paper previously published as a technical report. Sections on similarity measures for time-series, retrieval speed-up and intrinsic dimensionality have been added. An Appendix is included providing access to Python code for the key methods.Comment: 22 pages, 15 figures: An updated edition of an older tutorial on kN

    A reliable order-statistics-based approximate nearest neighbor search algorithm

    Full text link
    We propose a new algorithm for fast approximate nearest neighbor search based on the properties of ordered vectors. Data vectors are classified based on the index and sign of their largest components, thereby partitioning the space in a number of cones centered in the origin. The query is itself classified, and the search starts from the selected cone and proceeds to neighboring ones. Overall, the proposed algorithm corresponds to locality sensitive hashing in the space of directions, with hashing based on the order of components. Thanks to the statistical features emerging through ordering, it deals very well with the challenging case of unstructured data, and is a valuable building block for more complex techniques dealing with structured data. Experiments on both simulated and real-world data prove the proposed algorithm to provide a state-of-the-art performance

    Efficient Classification for Metric Data

    Full text link
    Recent advances in large-margin classification of data residing in general metric spaces (rather than Hilbert spaces) enable classification under various natural metrics, such as string edit and earthmover distance. A general framework developed for this purpose by von Luxburg and Bousquet [JMLR, 2004] left open the questions of computational efficiency and of providing direct bounds on generalization error. We design a new algorithm for classification in general metric spaces, whose runtime and accuracy depend on the doubling dimension of the data points, and can thus achieve superior classification performance in many common scenarios. The algorithmic core of our approach is an approximate (rather than exact) solution to the classical problems of Lipschitz extension and of Nearest Neighbor Search. The algorithm's generalization performance is guaranteed via the fat-shattering dimension of Lipschitz classifiers, and we present experimental evidence of its superiority to some common kernel methods. As a by-product, we offer a new perspective on the nearest neighbor classifier, which yields significantly sharper risk asymptotics than the classic analysis of Cover and Hart [IEEE Trans. Info. Theory, 1967].Comment: This is the full version of an extended abstract that appeared in Proceedings of the 23rd COLT, 201
    • …
    corecore