2 research outputs found

    Fast learning Circular Complex-valued Extreme Learning Machine (CC-ELM) for real-valued classification problems

    No full text
    In this paper, we present a fast learning fully complex-valued extreme learning machine classifier, referred to as ‘Circular Complex-valued Extreme Learning Machine (CC-ELM)’ for handling real-valued classification problems. CC-ELM is a single hidden layer network with non-linear input and hidden layers and a linear output layer. A circular transformation with a translational/rotational bias term that performs a one-to-one transformation of real-valued features to the complex plane is used as an activation function for the input neurons. The neurons in the hidden layer employ a fully complex-valued Gaussian-like (‘sech’) activation function. The input parameters of CC-ELM are chosen randomly and the output weights are computed analytically. This paper also presents an analytical proof to show that the decision boundaries of a single complex-valued neuron at the hidden and output layers of CC-ELM consist of two hyper-surfaces that intersect orthogonally. These orthogonal boundaries and the input circular transformation help CC-ELM to perform real-valued classification tasks efficiently. Performance of CC-ELM is evaluated using a set of benchmark real-valued classification problems from the University of California, Irvine machine learning repository. Finally, the performance of CC-ELM is compared with existing methods on two practical problems, viz., the acoustic emission signal classification problem and a mammogram classification problem. These study results show that CC-ELM performs better than other existing (both) real-valued and complex-valued classifiers, especially when the data sets are highly unbalanced

    Data-Driven Dynamic Modeling for Prediction of Molten Iron Silicon Content Using ELM with Self-Feedback

    Get PDF
    Silicon content ([Si] for short) of the molten metal is an important index reflecting the product quality and thermal status of the blast furnace (BF) ironmaking process. Since the online detection of [Si] is difficult and larger time delay exists in the offline assay procedure, quality modeling is required to achieve online estimation of [Si]. Focusing on this problem, a data-driven dynamic modeling method is proposed using improved extreme learning machine (ELM) with the help of principle component analysis (PCA). First, data-driven PCA is introduced to pick out the most pivotal variables from multitudinous factors to serve as the secondary variables of modeling. Second, a novel data-driven ELM modeling technology with good generalization performance and nonlinear mapping capability is presented by applying a self-feedback structure on traditional ELM. The feedback outputs at previous time together with input variables at different time constitute a dynamic ELM structure which has a storage ability to tackle data in different time and overcomes the limitation of static modeling of traditional ELM. At last, industrial experiments demonstrate that the proposed method has a better modeling and estimating accuracy as well as a faster learning speed when compared with different modeling methods with different model structures
    corecore