416 research outputs found

    Fast Label Propagation on Facial Images Using a Pruned Similarity Matrix

    Get PDF

    Towards Learning Representations in Visual Computing Tasks

    Get PDF
    abstract: The performance of most of the visual computing tasks depends on the quality of the features extracted from the raw data. Insightful feature representation increases the performance of many learning algorithms by exposing the underlying explanatory factors of the output for the unobserved input. A good representation should also handle anomalies in the data such as missing samples and noisy input caused by the undesired, external factors of variation. It should also reduce the data redundancy. Over the years, many feature extraction processes have been invented to produce good representations of raw images and videos. The feature extraction processes can be categorized into three groups. The first group contains processes that are hand-crafted for a specific task. Hand-engineering features requires the knowledge of domain experts and manual labor. However, the feature extraction process is interpretable and explainable. Next group contains the latent-feature extraction processes. While the original feature lies in a high-dimensional space, the relevant factors for a task often lie on a lower dimensional manifold. The latent-feature extraction employs hidden variables to expose the underlying data properties that cannot be directly measured from the input. Latent features seek a specific structure such as sparsity or low-rank into the derived representation through sophisticated optimization techniques. The last category is that of deep features. These are obtained by passing raw input data with minimal pre-processing through a deep network. Its parameters are computed by iteratively minimizing a task-based loss. In this dissertation, I present four pieces of work where I create and learn suitable data representations. The first task employs hand-crafted features to perform clinically-relevant retrieval of diabetic retinopathy images. The second task uses latent features to perform content-adaptive image enhancement. The third task ranks a pair of images based on their aestheticism. The goal of the last task is to capture localized image artifacts in small datasets with patch-level labels. For both these tasks, I propose novel deep architectures and show significant improvement over the previous state-of-art approaches. A suitable combination of feature representations augmented with an appropriate learning approach can increase performance for most visual computing tasks.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Deep Clustering and Deep Network Compression

    Get PDF
    The use of deep learning has grown increasingly in recent years, thereby becoming a much-discussed topic across a diverse range of fields, especially in computer vision, text mining, and speech recognition. Deep learning methods have proven to be robust in representation learning and attained extraordinary achievement. Their success is primarily due to the ability of deep learning to discover and automatically learn feature representations by mapping input data into abstract and composite representations in a latent space. Deep learning’s ability to deal with high-level representations from data has inspired us to make use of learned representations, aiming to enhance unsupervised clustering and evaluate the characteristic strength of internal representations to compress and accelerate deep neural networks.Traditional clustering algorithms attain a limited performance as the dimensionality in-creases. Therefore, the ability to extract high-level representations provides beneficial components that can support such clustering algorithms. In this work, we first present DeepCluster, a clustering approach embedded in a deep convolutional auto-encoder. We introduce two clustering methods, namely DCAE-Kmeans and DCAE-GMM. The DeepCluster allows for data points to be grouped into their identical cluster, in the latent space, in a joint-cost function by simultaneously optimizing the clustering objective and the DCAE objective, producing stable representations, which is appropriate for the clustering process. Both qualitative and quantitative evaluations of proposed methods are reported, showing the efficiency of deep clustering on several public datasets in comparison to the previous state-of-the-art methods.Following this, we propose a new version of the DeepCluster model to include varying degrees of discriminative power. This introduces a mechanism which enables the imposition of regularization techniques and the involvement of a supervision component. The key idea of our approach is to distinguish the discriminatory power of numerous structures when searching for a compact structure to form robust clusters. The effectiveness of injecting various levels of discriminatory powers into the learning process is investigated alongside the exploration and analytical study of the discriminatory power obtained through the use of two discriminative attributes: data-driven discriminative attributes with the support of regularization techniques, and supervision discriminative attributes with the support of the supervision component. An evaluation is provided on four different datasets.The use of neural networks in various applications is accompanied by a dramatic increase in computational costs and memory requirements. Making use of the characteristic strength of learned representations, we propose an iterative pruning method that simultaneously identifies the critical neurons and prunes the model during training without involving any pre-training or fine-tuning procedures. We introduce a majority voting technique to compare the activation values among neurons and assign a voting score to evaluate their importance quantitatively. This mechanism effectively reduces model complexity by eliminating the less influential neurons and aims to determine a subset of the whole model that can represent the reference model with much fewer parameters within the training process. Empirically, we demonstrate that our pruning method is robust across various scenarios, including fully-connected networks (FCNs), sparsely-connected networks (SCNs), and Convolutional neural networks (CNNs), using two public datasets.Moreover, we also propose a novel framework to measure the importance of individual hidden units by computing a measure of relevance to identify the most critical filters and prune them to compress and accelerate CNNs. Unlike existing methods, we introduce the use of the activation of feature maps to detect valuable information and the essential semantic parts, with the aim of evaluating the importance of feature maps, inspired by novel neural network interpretability. A majority voting technique based on the degree of alignment between a se-mantic concept and individual hidden unit representations is utilized to evaluate feature maps’ importance quantitatively. We also propose a simple yet effective method to estimate new convolution kernels based on the remaining crucial channels to accomplish effective CNN compression. Experimental results show the effectiveness of our filter selection criteria, which outperforms the state-of-the-art baselines.To conclude, we present a comprehensive, detailed review of time-series data analysis, with emphasis on deep time-series clustering (DTSC), and a founding contribution to the area of applying deep clustering to time-series data by presenting the first case study in the context of movement behavior clustering utilizing the DeepCluster method. The results are promising, showing that the latent space encodes sufficient patterns to facilitate accurate clustering of movement behaviors. Finally, we identify state-of-the-art and present an outlook on this important field of DTSC from five important perspectives

    Receptive fields optimization in deep learning for enhanced interpretability, diversity, and resource efficiency.

    Get PDF
    In both supervised and unsupervised learning settings, deep neural networks (DNNs) are known to perform hierarchical and discriminative representation of data. They are capable of automatically extracting excellent hierarchy of features from raw data without the need for manual feature engineering. Over the past few years, the general trend has been that DNNs have grown deeper and larger, amounting to huge number of final parameters and highly nonlinear cascade of features, thus improving the flexibility and accuracy of resulting models. In order to account for the scale, diversity and the difficulty of data DNNs learn from, the architectural complexity and the excessive number of weights are often deliberately built in into their design. This flexibility and performance usually come with high computational and memory demands both during training and inference. In addition, insight into the mappings DNN models perform and human ability to understand them still remain very limited. This dissertation addresses some of these limitations by balancing three conflicting objectives: computational/ memory demands, interpretability, and accuracy. This dissertation first introduces some unsupervised feature learning methods in a broader context of dictionary learning. It also sets the tone for deep autoencoder learning and constraints for data representations in light of removing some of the aforementioned bottlenecks such as the feature interpretability of deep learning models with nonnegativity constraints on receptive fields. In addition, the two main classes of solution to the drawbacks associated with overparameterization/ over-complete representation in deep learning models are also presented. Subsequently, two novel methods, one for each solution class, are presented to address the problems resulting from over-complete representation exhibited by most deep learning models. The first method is developed to achieve inference-cost-efficient models via elimination of redundant features with negligible deterioration of prediction accuracy. This is important especially for deploying deep learning models into resource-limited portable devices. The second method aims at diversifying the features of DNNs in the learning phase to improve their performance without undermining their size and capacity. Lastly, feature diversification is considered to stabilize adversarial learning and extensive experimental outcomes show that these methods have the potential of advancing the current state-of-the-art on different learning tasks and benchmark datasets

    Deep Grassmann Manifold Optimization for Computer Vision

    Get PDF
    In this work, we propose methods that advance four areas in the field of computer vision: dimensionality reduction, deep feature embeddings, visual domain adaptation, and deep neural network compression. We combine concepts from the fields of manifold geometry and deep learning to develop cutting edge methods in each of these areas. Each of the methods proposed in this work achieves state-of-the-art results in our experiments. We propose the Proxy Matrix Optimization (PMO) method for optimization over orthogonal matrix manifolds, such as the Grassmann manifold. This optimization technique is designed to be highly flexible enabling it to be leveraged in many situations where traditional manifold optimization methods cannot be used. We first use PMO in the field of dimensionality reduction, where we propose an iterative optimization approach to Principal Component Analysis (PCA) in a framework called Proxy Matrix optimization based PCA (PM-PCA). We also demonstrate how PM-PCA can be used to solve the general LpL_p-PCA problem, a variant of PCA that uses arbitrary fractional norms, which can be more robust to outliers. We then present Cascaded Projection (CaP), a method which uses tensor compression based on PMO, to reduce the number of filters in deep neural networks. This, in turn, reduces the number of computational operations required to process each image with the network. Cascaded Projection is the first end-to-end trainable method for network compression that uses standard backpropagation to learn the optimal tensor compression. In the area of deep feature embeddings, we introduce Deep Euclidean Feature Representations through Adaptation on the Grassmann manifold (DEFRAG), that leverages PMO. The DEFRAG method improves the feature embeddings learned by deep neural networks through the use of auxiliary loss functions and Grassmann manifold optimization. Lastly, in the area of visual domain adaptation, we propose the Manifold-Aligned Label Transfer for Domain Adaptation (MALT-DA) to transfer knowledge from samples in a known domain to an unknown domain based on cross-domain cluster correspondences

    Complex-Wavelet Structural Similarity Based Image Classification

    Get PDF
    Complex wavelet structural similarity (CW-SSIM) index has been recognized as a novel image similarity measure of broad potential applications due to its robustness to small geometric distortions such as translation, scaling and rotation of images. Nevertheless, how to make the best use of it in image classification problems has not been deeply investi- gated. In this study, we introduce a series of novel image classification algorithms based on CW-SSIM and use handwritten digit and face image recognition as examples for demonstration, including CW-SSIM based nearest neighbor method, CW-SSIM based k means method, CW-SSIM based support vector machine method (SVM) and CW-SSIM based SVM using affinity propagation. Among the proposed approaches, the best compromise between accuracy and complexity is obtained by the CW-SSIM support vector machine algorithm, which combines an unsupervised clustering method to divide the training images into clusters with representative images and a supervised learning method based on support vector machines to maximize the classification accuracy. Our experiments show that such a conceptually simple image classification method, which does not involve any registration, intensity normalization or sophisticated feature extraction processes, and does not rely on any modeling of the image patterns or distortion processes, achieves competitive performance with reduced computational cost

    Why is Machine Learning Security so hard?

    Get PDF
    The increase of available data and computing power has fueled a wide application of machine learning (ML). At the same time, security concerns are raised: ML models were shown to be easily fooled by slight perturbations on their inputs. Furthermore, by querying a model and analyzing output and input pairs, an attacker can infer the training data or replicate the model, thereby harming the owner’s intellectual property. Also, altering the training data can lure the model into producing specific or generally wrong outputs at test time. So far, none of the attacks studied in the field has been satisfactorily defended. In this work, we shed light on these difficulties. We first consider classifier evasion or adversarial examples. The computation of such examples is an inherent problem, as opposed to a bug that can be fixed. We also show that adversarial examples often transfer from one model to another, different model. Afterwards, we point out that the detection of backdoors (a training-time attack) is hindered as natural backdoor-like patterns occur even in benign neural networks. The question whether a pattern is benign or malicious then turns into a question of intention, which is hard to tackle. A different kind of complexity is added with the large libraries nowadays in use to implement machine learning. We introduce an attack that alters the library, thereby decreasing the accuracy a user can achieve. In case the user is aware of the attack, however, it is straightforward to defeat. This is not the case for most classical attacks described above. Additional difficulty is added if several attacks are studied at once: we show that even if the model is configured for one attack to be less effective, another attack might perform even better. We conclude by pointing out the necessity of understanding the ML model under attack. On the one hand, as we have seen throughout the examples given here, understanding precedes defenses and attacks. On the other hand, an attack, even a failed one, often yields new insights and knowledge about the algorithm studied.This work was supported by the German Federal Ministry of Education and Research (BMBF) through funding for the Center for IT-Security,Privacy and Accountability (CISPA) (FKZ: 16KIS0753
    • …
    corecore