352,487 research outputs found

    Fast Computational Kinetics Program

    Get PDF
    Batch kinetics (1-D) algorithm development, stirred reactor (O-D) algorithm development, and interactive computer programs are summarized

    Dilation kinetics of glassy, aromatic polyimides induced by carbon dioxide sorption

    Get PDF
    Over the past years, the equilibrium sorption of gases in polymers has been intensively studied. Mostly, glassy polymers were investigated because of their excellent selective mass transport properties. This work does not focus on the equilibrium sorption but on the kinetics to reach the equilibrium. We developed a new experimental method measuring the sorption-induced dilation kinetics of a polymer film. Carbon dioxide and glassy, aromatic polyimides were chosen as model systems. Low-pressure experiments demonstrate that the measured dilation kinetics represent the sorption kinetics. A significant delay between the sorption and dilation kinetics is based on the fact that dilation kinetics occurs simultaneously with the concentration increase in the center of the polymer film. High-pressure experiments reveal significant differences in dilation kinetics compared to low-pressure experiments. Generally, three regimes can be distinguished in the dilation kinetics: a first, fast volume increase followed by two much slower regimes of volume increase. The magnitude of fast and slow dilation kinetics strongly depends on the swelling history of the polymer sample. The results of the experiments are analyzed in the light of a model relating the fast dilation kinetics to a reversible Fickian dilation and the slower dilation kinetics to an irreversible, relaxational dilation

    Neutron kinetics of a fast, hot, critical assembly in the startup mode

    Get PDF
    Neutron kinetics of fast, hot, critical assembly in startup mod

    Fast algorithms for combustion kinetics calculations: A comparison

    Get PDF
    To identify the fastest algorithm currently available for the numerical integration of chemical kinetic rate equations, several algorithms were examined. Findings to date are summarized. The algorithms examined include two general-purpose codes EPISODE and LSODE and three special-purpose (for chemical kinetic calculations) codes CHEMEQ, CRK1D, and GCKP84. In addition, an explicit Runge-Kutta-Merson differential equation solver (IMSL Routine DASCRU) is used to illustrate the problems associated with integrating chemical kinetic rate equations by a classical method. Algorithms were applied to two test problems drawn from combustion kinetics. These problems included all three combustion regimes: induction, heat release and equilibration. Variations of the temperature and species mole fraction are given with time for test problems 1 and 2, respectively. Both test problems were integrated over a time interval of 1 ms in order to obtain near-equilibration of all species and temperature. Of the codes examined in this study, only CREK1D and GCDP84 were written explicitly for integrating exothermic, non-isothermal combustion rate equations. These therefore have built-in procedures for calculating the temperature

    Protein sliding and hopping kinetics on DNA

    Get PDF
    Using Monte-Carlo simulations, we deconvolved the sliding and hopping kinetics of GFP-LacI proteins on elongated DNA from their experimentally observed seconds-long diffusion trajectories. Our simulations suggest the following results: (1) in each diffusion trajectory, a protein makes on average hundreds of alternating slides and hops with a mean sliding time of several tens of ms; (2) sliding dominates the root mean square displacement of fast diffusion trajectories, whereas hopping dominates slow ones; (3) flow and variations in salt concentration have limited effects on hopping kinetics, while in vivo DNA configuration is not expected to influence sliding kinetics; furthermore, (4) the rate of occurrence for hops longer than 200 nm agrees with experimental data for EcoRV proteins
    corecore