1,971 research outputs found

    Erdos-Szekeres-type statements: Ramsey function and decidability in dimension 1

    Full text link
    A classical and widely used lemma of Erdos and Szekeres asserts that for every n there exists N such that every N-term sequence a of real numbers contains an n-term increasing subsequence or an n-term nondecreasing subsequence; quantitatively, the smallest N with this property equals (n-1)^2+1. In the setting of the present paper, we express this lemma by saying that the set of predicates Phi={x_1<x_2,x_1\ge x_2}$ is Erdos-Szekeres with Ramsey function ES_Phi(n)=(n-1)^2+1. In general, we consider an arbitrary finite set Phi={Phi_1,...,Phi_m} of semialgebraic predicates, meaning that each Phi_j=Phi_j(x_1,...,x_k) is a Boolean combination of polynomial equations and inequalities in some number k of real variables. We define Phi to be Erdos-Szekeres if for every n there exists N such that each N-term sequence a of real numbers has an n-term subsequence b such that at least one of the Phi_j holds everywhere on b, which means that Phi_j(b_{i_1},...,b_{i_k}) holds for every choice of indices i_1,i_2,...,i_k, 1<=i_1<i_2<... <i_k<= n. We write ES_Phi(n) for the smallest N with the above property. We prove two main results. First, the Ramsey functions in this setting are at most doubly exponential (and sometimes they are indeed doubly exponential): for every Phi that is Erd\H{o}s--Szekeres, there is a constant C such that ES_Phi(n) < exp(exp(Cn)). Second, there is an algorithm that, given Phi, decides whether it is Erdos-Szekeres; thus, one-dimensional Erdos-Szekeres-style theorems can in principle be proved automatically.Comment: minor fixes of the previous version. to appear in Duke Math.

    Complexity Bounds for Ordinal-Based Termination

    Full text link
    `What more than its truth do we know if we have a proof of a theorem in a given formal system?' We examine Kreisel's question in the particular context of program termination proofs, with an eye to deriving complexity bounds on program running times. Our main tool for this are length function theorems, which provide complexity bounds on the use of well quasi orders. We illustrate how to prove such theorems in the simple yet until now untreated case of ordinals. We show how to apply this new theorem to derive complexity bounds on programs when they are proven to terminate thanks to a ranking function into some ordinal.Comment: Invited talk at the 8th International Workshop on Reachability Problems (RP 2014, 22-24 September 2014, Oxford

    HOL(y)Hammer: Online ATP Service for HOL Light

    Full text link
    HOL(y)Hammer is an online AI/ATP service for formal (computer-understandable) mathematics encoded in the HOL Light system. The service allows its users to upload and automatically process an arbitrary formal development (project) based on HOL Light, and to attack arbitrary conjectures that use the concepts defined in some of the uploaded projects. For that, the service uses several automated reasoning systems combined with several premise selection methods trained on all the project proofs. The projects that are readily available on the server for such query answering include the recent versions of the Flyspeck, Multivariate Analysis and Complex Analysis libraries. The service runs on a 48-CPU server, currently employing in parallel for each task 7 AI/ATP combinations and 4 decision procedures that contribute to its overall performance. The system is also available for local installation by interested users, who can customize it for their own proof development. An Emacs interface allowing parallel asynchronous queries to the service is also provided. The overall structure of the service is outlined, problems that arise and their solutions are discussed, and an initial account of using the system is given

    The proof-theoretic strength of Ramsey's theorem for pairs and two colors

    Get PDF
    Ramsey's theorem for nn-tuples and kk-colors (RTkn\mathsf{RT}^n_k) asserts that every k-coloring of [N]n[\mathbb{N}]^n admits an infinite monochromatic subset. We study the proof-theoretic strength of Ramsey's theorem for pairs and two colors, namely, the set of its Π10\Pi^0_1 consequences, and show that RT22\mathsf{RT}^2_2 is Π30\Pi^0_3 conservative over IΣ10\mathsf{I}\Sigma^0_1. This strengthens the proof of Chong, Slaman and Yang that RT22\mathsf{RT}^2_2 does not imply IΣ20\mathsf{I}\Sigma^0_2, and shows that RT22\mathsf{RT}^2_2 is finitistically reducible, in the sense of Simpson's partial realization of Hilbert's Program. Moreover, we develop general tools to simplify the proofs of Π30\Pi^0_3-conservation theorems.Comment: 32 page

    Connecting the provable with the unprovable: phase transitions for unprovability

    Get PDF
    Why are some theorems not provable in certain theories of mathematics? Why are most theorems from existing mathematics provable in very weak systems? Unprovability theory seeks answers for those questions. Logicians have obtained unprovable statements which resemble provable statements. These statements often contain some condition which seems to cause unprovability, as this condition can be modified, using a function parameter, in such a manner as to make the theorem provable. It turns out that in many cases there is a phase transition: By modifying the parameter slightly one changes the theorem from provable to unprovable. We study these transitions with the goal of gaining more insights into unprovability
    corecore