2,752 research outputs found

    On an "interaction by moments" property of four center integrals

    Get PDF
    The four center integrals needed in the Hartree Fock approximation and in TDDFT linear response are known to be difficult to calculate for orbitals of the Slater type or of finite range. We show that the interaction of pairs of products that do not mutually intersect may be replaced by the interaction of their moments, of which there are O(N). Only quadruplets of orbitals 'close' to one another need an explicit calculation and the total calculational effort therefore scales as O(N). We provide a new and concise proof of this "interaction by moments" property.Comment: The context of this note is the implementation of TDDFT linear response for extended molecular system

    Fast evaluation of solid harmonic Gaussian integrals for local resolution-of-the-identity methods and range-separated hybrid functionals

    Full text link
    An integral scheme for the efficient evaluation of two-center integrals over contracted solid harmonic Gaussian functions is presented. Integral expressions are derived for local operators that depend on the position vector of one of the two Gaussian centers. These expressions are then used to derive the formula for three-index overlap integrals where two of the three Gaussians are located at the same center. The efficient evaluation of the latter is essential for local resolution-of-the-identity techniques that employ an overlap metric. We compare the performance of our integral scheme to the widely used Cartesian Gaussian-based method of Obara and Saika (OS). Non-local interaction potentials such as standard Coulomb, modified Coulomb and Gaussian-type operators, that occur in range-separated hybrid functionals, are also included in the performance tests. The speed-up with respect to the OS scheme is up to three orders of magnitude for both, integrals and their derivatives. In particular, our method is increasingly efficient for large angular momenta and highly contracted basis sets.Comment: 18 pages, 2 figures; accepted manuscript. v2: supplementary material include

    On the Use of Multipole Expansion in Time Evolution of Non-linear Dynamical Systems and Some Surprises Related to Superradiance

    Full text link
    A new numerical method is introduced to study the problem of time evolution of generic non-linear dynamical systems in four-dimensional spacetimes. It is assumed that the time level surfaces are foliated by a one-parameter family of codimension two compact surfaces with no boundary and which are conformal to a Riemannian manifold C. The method is based on the use of a multipole expansion determined uniquely by the induced metric structure on C. The approach is fully spectral in the angular directions. The dynamics in the complementary 1+1 Lorentzian spacetime is followed by making use of a fourth order finite differencing scheme with adaptive mesh refinement. In checking the reliability of the introduced new method the evolution of a massless scalar field on a fixed Kerr spacetime is investigated. In particular, the angular distribution of the evolving field in to be superradiant scattering is studied. The primary aim was to check the validity of some of the recent arguments claiming that the Penrose process, or its field theoretical correspondence---superradiance---does play crucial role in jet formation in black hole spacetimes while matter accretes onto the central object. Our findings appear to be on contrary to these claims as the angular dependence of a to be superradiant scattering of a massless scalar field does not show any preference of the axis of rotation. In addition, the process of superradiance, in case of a massless scalar field, was also investigated. On contrary to the general expectations no energy extraction from black hole was found even though the incident wave packets was fine tuned to be maximally superradiant. Instead of energy extraction the to be superradiant part of the incident wave packet fails to reach the ergoregion rather it suffers a total reflection which appears to be a new phenomenon.Comment: 49 pages, 11 figure

    Quantum mechanical calculation of Rydberg-Rydberg autoionization rates

    Full text link
    We present quantum mechanical calculations of Auger decay rates for two Rubidium Rydberg atoms with weakly overlapping electron clouds. We neglect exchange effects and consider tensor products of independent atom states forming an approximate basis of the two-electron state space. We consider large sets of two-atom states with randomly chosen quantum numbers and find that the charge overlap between the two Rydberg electrons allows one to characterise the magnitude of the Auger decay rates. If the electron clouds overlap by more than one percent, the Auger decay rates increase approximately exponentially with the charge overlap. This finding is independent of the energy of the initial state.Comment: 8 pages, 5 figure
    • …
    corecore