399 research outputs found

    Application of Honeypot in Cloud Security: A Review

    Get PDF
    In this paper, researcher is emphasizing on security handling in cloud computing using Honeypot. Now a days companies are providing cloud services for managing resources at higher level. Security Hurdle is a major issue in cloud computing that can be solved by implementing honeypot in cloud computing

    DECEPTION BASED TECHNIQUES AGAINST RANSOMWARES: A SYSTEMATIC REVIEW

    Get PDF
    Ransomware is the most prevalent emerging business risk nowadays. It seriously affects business continuity and operations. According to Deloitte Cyber Security Landscape 2022, up to 4000 ransomware attacks occur daily, while the average number of days an organization takes to identify a breach is 191. Sophisticated cyber-attacks such as ransomware typically must go through multiple consecutive phases (initial foothold, network propagation, and action on objectives) before accomplishing its final objective. This study analyzed decoy-based solutions as an approach (detection, prevention, or mitigation) to overcome ransomware. A systematic literature review was conducted, in which the result has shown that deception-based techniques have given effective and significant performance against ransomware with minimal resources. It is also identified that contrary to general belief, deception techniques mainly involved in passive approaches (i.e., prevention, detection) possess other active capabilities such as ransomware traceback and obstruction (thwarting), file decryption, and decryption key recovery. Based on the literature review, several evaluation methods are also analyzed to measure the effectiveness of these deception-based techniques during the implementation process

    Honeypot-based Security Enhancements for Information Systems

    Get PDF
    The purpose of this thesis is to explore honeypot-based security enhancements for information systems. First, we provide a comprehensive survey of the research that has been carried out on honeypots and honeynets for Internet of Things (IoT), Industrial Internet of Things (IIoT), and Cyber-physical Systems (CPS). We provide a taxonomy and extensive analysis of the existing honeypots and honeynets, state key design factors for the state-of-the-art honeypot/honeynet research and outline open issues. Second, we propose S-Pot, a smart honeypot framework based on open-source resources. S-Pot uses enterprise and IoT honeypots to attract attackers, learns from attacks via ML classifiers, and dynamically configures the rules of SDN. Our performance evaluation of S-Pot in detecting attacks using various ML classifiers shows that it can detect attacks with 97% accuracy using J48 algorithm. Third, for securing host-based Docker containers from cryptojacking, using honeypots, we perform a forensic analysis to identify indicators for the detection of unauthorized cryptomining, present measures for securing them, and propose an approach for monitoring host-based Docker containers for cryptojacking detection. Our results reveal that host temperature, combined with container resource usage, Stratum protocol, keywords in DNS requests, and the use of the container’s ephemeral ports are notable indicators of possible unauthorized cryptomining

    Three Decades of Deception Techniques in Active Cyber Defense -- Retrospect and Outlook

    Full text link
    Deception techniques have been widely seen as a game changer in cyber defense. In this paper, we review representative techniques in honeypots, honeytokens, and moving target defense, spanning from the late 1980s to the year 2021. Techniques from these three domains complement with each other and may be leveraged to build a holistic deception based defense. However, to the best of our knowledge, there has not been a work that provides a systematic retrospect of these three domains all together and investigates their integrated usage for orchestrated deceptions. Our paper aims to fill this gap. By utilizing a tailored cyber kill chain model which can reflect the current threat landscape and a four-layer deception stack, a two-dimensional taxonomy is developed, based on which the deception techniques are classified. The taxonomy literally answers which phases of a cyber attack campaign the techniques can disrupt and which layers of the deception stack they belong to. Cyber defenders may use the taxonomy as a reference to design an organized and comprehensive deception plan, or to prioritize deception efforts for a budget conscious solution. We also discuss two important points for achieving active and resilient cyber defense, namely deception in depth and deception lifecycle, where several notable proposals are illustrated. Finally, some outlooks on future research directions are presented, including dynamic integration of different deception techniques, quantified deception effects and deception operation cost, hardware-supported deception techniques, as well as techniques developed based on better understanding of the human element.Comment: 19 page

    Stratosphere: Finding Vulnerable Cloud Storage Buckets

    Full text link
    Misconfigured cloud storage buckets have leaked hundreds of millions of medical, voter, and customer records. These breaches are due to a combination of easily-guessable bucket names and error-prone security configurations, which, together, allow attackers to easily guess and access sensitive data. In this work, we investigate the security of buckets, finding that prior studies have largely underestimated cloud insecurity by focusing on simple, easy-to-guess names. By leveraging prior work in the password analysis space, we introduce Stratosphere, a system that learns how buckets are named in practice in order to efficiently guess the names of vulnerable buckets. Using Stratosphere, we find wide-spread exploitation of buckets and vulnerable configurations continuing to increase over the years. We conclude with recommendations for operators, researchers, and cloud providers.Comment: Proceedings of the 24th International Symposium on Research in Attacks, Intrusions and Defenses. 202

    Proactive cybersecurity tailoring through deception techniques

    Get PDF
    Dissertação de natureza científica para obtenção do grau de Mestre em Engenharia Informática e de ComputadoresUma abordagem proativa à cibersegurança pode complementar uma postura reativa ajudando as empresas a lidar com incidentes de segurança em fases iniciais. As organizações podem proteger-se ativamente contra a assimetria inerente à guerra cibernética através do uso de técnicas proativas, como por exemplo a ciber deception. A implantação intencional de artefactos enganosos para construir uma infraestrutura que permite a investigação em tempo real dos padrões e abordagens de um atacante sem comprometer a rede principal da organização é o propósito da deception cibernética. Esta metodologia pode revelar vulnerabilidades por descobrir, conhecidas como vulnerabilidades de dia-zero, sem interferir com as atividades de rotina da organização. Além disso, permite às empresas a extração de informações vitais sobre o atacante que, de outra forma, seriam difíceis de adquirir. No entanto, colocar estes conceitos em prática em circunstâncias reais constitui problemas de grande ordem. Este estudo propõe uma arquitetura para um sistema informático de deception, que culmina numa implementação que implanta e adapta dinamicamente uma rede enganosa através do uso de técnicas de redes definidas por software e de virtualização de rede. A rede ilusora é uma rede de ativos virtuais com uma topologia e especificações pré-planeadas, coincidentes com uma estratégia de deception. O sistema pode rastrear e avaliar a atividade do atacante através da monitorização contínua dos artefactos da rede. O refinamento em tempo real do plano de deception pode exigir alterações na topologia e nos artefactos da rede, possíveis devido às capacidades de modificação dinâmica das redes definidas por software. As organizações podem maximizar as suas capacidades de deception ao combinar estes processos com componentes avançados de deteção e classificação de ataques informáticos. A eficácia da solução proposta é avaliada usando vários casos de estudo que demonstram a sua utilidade.A proactive approach to cybersecurity can supplement a reactive posture by helping businesses to handle security incidents in the early phases of an attack. Organizations can actively protect against the inherent asymmetry of cyber warfare by using proactive techniques such as cyber deception. The intentional deployment of misleading artifacts to construct an infrastructure that allows real-time investigation of an attacker's patterns and approaches without compromising the organization's principal network is what cyber deception entails. This method can reveal previously undiscovered vulnerabilities, referred to as zero-day vulnerabilities, without interfering with routine corporate activities. Furthermore, it enables enterprises to collect vital information about the attacker that would otherwise be difficult to access. However, putting such concepts into practice in real-world circumstances involves major problems. This study proposes an architecture for a deceptive system, culminating in an implementation that deploys and dynamically customizes a deception grid using Software-Defined Networking (SDN) and network virtualization techniques. The deception grid is a network of virtual assets with a topology and specifications that are pre-planned to coincide with a deception strategy. The system can trace and evaluate the attacker's activity by continuously monitoring the artifacts within the deception grid. Real-time refinement of the deception plan may necessitate changes to the grid's topology and artifacts, which can be assisted by software-defined networking's dynamic modification capabilities. Organizations can maximize their deception capabilities by merging these processes with advanced cyber-attack detection and classification components. The effectiveness of the given solution is assessed using numerous use cases that demonstrate its utility.N/
    corecore